Fractional Packing of T-Joins

Given a graph with nonnegative capacities on its edges, it is well known that the capacity of a minimum T-cut is equal to the value of a maximum fractional packing of T-joins. The Padberg--Rao algorithm finds a minimum capacity T-cut, but it does not produce a T-join packing. We present a polynomial combinatorial algorithm for finding an optimal T-join packing.

[1]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[2]  P. D. Seymour,et al.  On Multi‐Colourings of Cubic Graphs, and Conjectures of Fulkerson and Tutte , 1979 .

[3]  G. A. DIRAC,et al.  The Colouring of Maps , 1952, Nature.

[4]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[5]  D. R. Fulkerson,et al.  Blocking and anti-blocking pairs of polyhedra , 1971, Math. Program..

[6]  Arthur Cayley The Collected Mathematical Papers: On the colouring of maps , 1879 .

[7]  Francisco Barahona,et al.  Planar Multicommodity Flows, Max Cut, and the Chinese Postman Problem , 1990, Polyhedral Combinatorics.

[8]  Harold N. Gabow,et al.  Packing Algorithms for Arborescences (and Spanning Trees) in Capacitated Graphs , 1995, IPCO.

[9]  T. C. Hu,et al.  Multi-Terminal Network Flows , 1961 .

[10]  Jack Edmonds,et al.  Matching, Euler tours and the Chinese postman , 1973, Math. Program..

[11]  M. R. Rao,et al.  Odd Minimum Cut-Sets and b-Matchings , 1982, Math. Oper. Res..

[12]  Harold N. Gabow,et al.  An Efficient Implementation of Edmonds' Algorithm for Maximum Matching on Graphs , 1976, JACM.

[13]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[14]  Jaime Cohen,et al.  Minimax relations for T-join packing problems , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[15]  P. Seymour On Odd Cuts and Plane Multicommodity Flows , 1981 .