ISAC - Instance-Specific Algorithm Configuration

We present a new method for instance-specific algorithm configuration (ISAC). It is based on the integration of the algorithm configuration system GGA and the recently proposed stochastic offline programming paradigm. ISAC is provided a solver with categorical, ordinal, and/or continuous parameters, a training benchmark set of input instances for that solver, and an algorithm that computes a feature vector that characterizes any given instance. ISAC then provides high quality parameter settings for any new input instance. Experiments on a variety of different constrained optimization and constraint satisfaction solvers show that automatic algorithm configuration vastly outperforms manual tuning. Moreover, we show that instance-specific tuning frequently leads to significant speed-ups over instance-oblivious configurations.

[1]  Yoav Shoham,et al.  Towards a universal test suite for combinatorial auction algorithms , 2000, EC '00.

[2]  Carlos Ansótegui,et al.  A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.

[3]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[4]  Francis J. Vasko,et al.  Optimal Selection of Ingot Sizes Via Set Covering , 1987, Oper. Res..

[5]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms Using Linear Genetic Programming , 2005, Evolutionary Computation.

[6]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[7]  Henry A. Kautz,et al.  Auto-Walksat: A Self-Tuning Implementation of Walksat , 2001, Electron. Notes Discret. Math..

[8]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[9]  Ryuhei Uehara,et al.  Unique Solution Instance Generation for the 3-Satisfiability (3SAT) Problem , 1999 .

[10]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[11]  Yuri Malitsky,et al.  Stochastic Offline Programming , 2009, 2009 21st IEEE International Conference on Tools with Artificial Intelligence.

[12]  Frank Hutter,et al.  Parameter Adjustment Based on Performance Prediction: Towards an Instance-Aware Problem Solver , 2005 .

[13]  Bart Selman,et al.  Problem Structure in the Presence of Perturbations , 1997, AAAI/IAAI.

[14]  Thomas Bartz-Beielstein,et al.  Sequential Parameter Optimization Applied to Self-Adaptation for Binary-Coded Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[15]  Kevin Leyton-Brown,et al.  Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.

[16]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[17]  M. Padberg,et al.  Solving airline crew scheduling problems by branch-and-cut , 1993 .

[18]  Efthymios Housos,et al.  Automatic Optimization of Subproblems in Scheduling Airline Crews , 1997 .

[19]  Toby Walsh,et al.  Morphing: Combining Structure and Randomness , 1999, AAAI/IAAI.

[20]  Greg Hamerly,et al.  Learning the k in k-means , 2003, NIPS.

[21]  Serdar Kadioglu,et al.  Dialectic Search , 2009, CP.

[22]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[23]  Nysret Musliu,et al.  Local Search Algorithm for Unicost Set Covering Problem , 2006, IEA/AIE.

[24]  Michel Lemaître,et al.  Branch and Bound Algorithm Selection by Performance Prediction , 1998, AAAI/IAAI.

[25]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[26]  Charles S. ReVelle,et al.  The Location of Emergency Service Facilities , 1971, Oper. Res..

[27]  Holger H. Hoos,et al.  Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.

[28]  Matteo Fischetti,et al.  Algorithms for railway crew management , 1997, Math. Program..

[29]  Andrew Slater,et al.  Modelling More Realistic SAT Problems , 2002, Australian Joint Conference on Artificial Intelligence.

[30]  Alex S. Fukunaga,et al.  Automated Discovery of Local Search Heuristics for Satisfiability Testing , 2008, Evolutionary Computation.