Thermoelectric properties of bilayer graphene structures with bandgap opening

[1]  Yamamoto Takahiro,et al.  Optimization of Thermoelectric Power Factor of Bilayer Graphene by Vertical Electric Field , 2021 .

[2]  S. Kubakaddi Giant thermopower and power factor in magic angle twisted bilayer graphene at low temperature , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  R. Pérez-Álvarez,et al.  Enhancement of the thermoelectric properties in bilayer graphene structures induced by Fano resonances , 2020, Scientific Reports.

[4]  Kenji Watanabe,et al.  Evidence of Lifshitz Transition in the Thermoelectric Power of Ultrahigh-Mobility Bilayer Graphene. , 2020, Nano letters.

[5]  T. Taniguchi,et al.  Misorientation-Controlled Cross-Plane Thermoelectricity in Twisted Bilayer Graphene. , 2020, Physical review letters.

[6]  T. Kopeć,et al.  High thermoelectric performance in excitonic bilayer graphene , 2020, Physica E: Low-dimensional Systems and Nanostructures.

[7]  R. Pérez-Álvarez,et al.  Enhancement of the Fano-resonance response in bilayer graphene single and double barriers induced by bandgap opening , 2020 .

[8]  Heping Xie,et al.  Recent Progress of Two-Dimensional Thermoelectric Materials , 2020, Nano-micro letters.

[9]  J. Pu,et al.  2D Materials for Large‐Area Flexible Thermoelectric Devices , 2019, Advanced Energy Materials.

[10]  V. Davydov Some peculiarities of thermopower at the Lifshitz topological transitions due to stacking change in bilayer and multilayer graphene , 2019, Proceedings of the Royal Society A.

[11]  Yan Zhang,et al.  Enhanced thermoelectric performance of twisted bilayer graphene nanoribbons junction , 2018, Carbon.

[12]  A. Rycerz,et al.  Thermoelectric properties of gapped bilayer graphene , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Arjun Mani,et al.  Graphene quantum refrigerator , 2018, 1809.08535.

[14]  V. Nyamori,et al.  Graphene for Thermoelectric Applications: Prospects and Challenges , 2018 .

[15]  R. Krupke,et al.  Tuning Anti-Klein to Klein Tunneling in Bilayer Graphene. , 2017, Physical review letters.

[16]  A. Rycerz,et al.  Lifshitz transition and thermoelectric properties of bilayer graphene , 2017, 1712.05857.

[17]  I. Rodríguez-Vargas,et al.  Fano resonances in bilayer graphene superlattices , 2017, Scientific Reports.

[18]  Arindam Ghosh,et al.  Seebeck Coefficient of a Single van der Waals Junction in Twisted Bilayer Graphene. , 2017, Nano letters.

[19]  D. Newell,et al.  Coulomb drag and counterflow Seebeck coefficient in bilayer-graphene double layers , 2017, 1709.02778.

[20]  Dong Su Lee,et al.  Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10 nm neck-width , 2017 .

[21]  Ransell D’Souza,et al.  First-principles study of the electrical and lattice thermal transport in monolayer and bilayer graphene , 2017, 1703.00224.

[22]  A. Balandin,et al.  Phonons and thermal transport in graphene and graphene-based materials , 2016, Reports on progress in physics. Physical Society.

[23]  Hongtao Yuan,et al.  Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating , 2016, Scientific Reports.

[24]  J. A. Briones-Torres,et al.  Hybrid matrix method for stable numerical analysis of the propagation of Dirac electrons in gapless bilayer graphene superlattices , 2015, 1512.02613.

[25]  H. Rezania,et al.  Dynamical thermoelectric properties of doped AA-stacked bilayer graphene , 2016 .

[26]  T. Ihn,et al.  Band gap and broken chirality in single‐layer and bilayer graphene , 2015, 1508.02648.

[27]  C. Ye,et al.  Destruction of anti-Klein tunneling induced by resonant states in bilayer graphene , 2015 .

[28]  R. Pérez Álvarez,et al.  Relations between Transfer Matrices and Numerical Stability Analysis to Avoid the Ømega d Problem , 2015, SIAM J. Appl. Math..

[29]  P. Dollfus,et al.  Thermoelectric effects in graphene nanostructures , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  T. Ihn,et al.  Fabry-Pérot interference in gapped bilayer graphene with broken anti-Klein tunneling. , 2014, Physical review letters.

[31]  Zuanyi Li,et al.  Thermal and thermoelectric properties of graphene. , 2014, Small.

[32]  S. Kubakaddi,et al.  Scattering mechanisms and diffusion thermopower in a bilayer graphene , 2013 .

[33]  R. Ma Layer stacking dependence on thermoelectric properties of massive Dirac fermions in bilayer graphene , 2013 .

[34]  M. Koshino,et al.  The electronic properties of bilayer graphene , 2012, Reports on progress in physics. Physical Society.

[35]  E. Pop,et al.  Thermal properties of graphene: Fundamentals and applications , 2012, 1301.6181.

[36]  S. Lv,et al.  Effects of the edge states on conductance and thermopower for the bilayer graphene nanoribbons , 2012 .

[37]  C. Sinha,et al.  Unconventional ballistic transport through bilayer graphene electrostatic barriers , 2011 .

[38]  J. Kuo,et al.  Opening an electrical band gap of bilayer graphene with molecular doping. , 2011, ACS nano.

[39]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[40]  Ting-Kuo Lee,et al.  Enhanced thermoelectric power in dual-gated bilayer graphene. , 2011, Physical review letters.

[41]  L. Sheng,et al.  Thermoelectric and thermal transport in bilayer graphene systems , 2011, 1103.4270.

[42]  D. Naveh,et al.  Tunable band gaps in bilayer graphene-BN heterostructures. , 2010, Nano letters.

[43]  Wei-Li Lee,et al.  Transverse thermoelectric conductivity of bilayer graphene in the quantum Hall regime , 2010, 1008.0442.

[44]  Dong-Keun Ki,et al.  Thermoelectric transport of massive Dirac fermions in bilayer graphene , 2010, 1005.4739.

[45]  Samia Subrina,et al.  Dimensional crossover of thermal transport in few-layer graphene. , 2010, Nature materials.

[46]  T. K. Lee,et al.  Thermopower of gapped bilayer graphene , 2010, 1003.0815.

[47]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[48]  F. Peeters,et al.  Bilayer graphene with single and multiple electrostatic barriers: Band structure and transmission , 2009, 1101.3930.

[49]  F. Guinea,et al.  Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. , 2006, Physical review letters.

[50]  Eng Leong Tan,et al.  Hybrid compliance-stiffness matrix method for stable analysis of elastic wave propagation in multilayered anisotropic media. , 2006, The Journal of the Acoustical Society of America.