Positive effects of hydrogen in metals

Hydrogen is often present in metals as a result of production, fabrication and processing operations or service conditions. Thus, it can be regarded as an alloying element. Although, high hydrogen levels in metals can have a devastating effect on the mechanical properties, many positive effects can also be derived from its high solubility. The objective of this paper is to review some positive effects of hydrogen in metals. An emphasis will be made on enhancements in the processing properties due to hydrogen (thermohydrogen processing (THP)), though other uses of hydrogen, such as an energy storage device and in the electronics industry will also be presented.

[1]  Y. Hamakawa,et al.  Amorphous silicon technology , 1988 .

[2]  F. H. Froes,et al.  Titanium '92 : science and technology , 1993 .

[3]  Francis H. Froes,et al.  Thermohydrogen processing of titanium alloys , 1999 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  D. Eliezer,et al.  Hydrogen trapping in helium damaged metals: a theoretical approach , 1992, Journal of Materials Science.

[6]  Joanne L. Murray,et al.  Phase diagrams of binary titanium alloys , 1987 .

[7]  J. Jonas,et al.  Recent advances in the thermohydrogen processing of titanium alloys , 1996 .

[8]  C. Hamilton,et al.  Advanced processing methods for titanium , 1982 .

[9]  R. A. Oriani,et al.  The diffusion and trapping of hydrogen in steel , 1970 .

[10]  A M Russell,et al.  Science and technology. , 1972, Science.

[11]  A. W. Thompson,et al.  Effect of hydrogen on behavior of materials , 1976 .

[12]  G. Pressouyre,et al.  Trap theory of Hydrogen embrittlement , 1980 .

[13]  W. R. Witzke,et al.  Strengthening of Molybdenum and Tungsten Alloys with HfC , 1971 .

[14]  Herbert Herman,et al.  Treatise on Materials Science and Technology , 1979 .

[15]  Z. A. Foroulis,et al.  Environment-sensitive fracture of engineering materials : proceedings of a symposium held at the fall meeting of the Metallurgical Society of AIME in Chicago, Illinois, October 24-26, 1977 , 1979 .

[16]  Bassam Tabbara,et al.  Hydrogen Fuel for Surface Transportation , 1996 .

[17]  I. Bernstein,et al.  A kinetic trapping model for hydrogen-induced cracking , 1979 .

[18]  C. Briant,et al.  Embrittlement, Engineering Alloys , 1983 .

[19]  Michael S. Shur,et al.  Introduction to electronic devices , 1995 .

[20]  R. Sisson,et al.  Environmental degradation of engineering materials in hydrogen , 1981 .

[21]  J L Beeby,et al.  Physics of amorphous materials , 1984 .

[22]  L. S. Darken,et al.  Behavior of Hydrogen in Steel During and After Immersion in Acid , 1949 .

[23]  D. Eliezer,et al.  Trapping of hydrogen in helium-implanted metals , 1988 .

[24]  Malcolm J. Thompson,et al.  Amorphous silicon technology-1990 , 1990 .

[25]  Louis Schlapbach,et al.  Hydrogen in Intermetallic Compounds , 1983 .

[26]  F. Froes,et al.  Thermochemical processing of titanium alloys , 1990 .

[27]  R. Gibala,et al.  Hydrogen embrittlement and stress corrosion cracking , 1985 .

[28]  G. Alefeld,et al.  Hydrogen in Metals I , 1978 .

[29]  Corrosion , 1941, Science.

[30]  A. W. Thompson,et al.  Hydrogen effects on material behavior , 1990 .

[31]  M. R. Louthan,et al.  Environmental degradation of engineering materials in aggressive environments : proceedings of Second International Conference on Environmental Degradation of Engineering Materials, September 21-23, 1981, Virginia Polytechnic Institute, Blacksburg, Va. , 1981 .

[32]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[33]  R. Bowman,et al.  Hydrogen in Disordered and Amorphous Solids , 1986 .

[34]  H. Wipf Hydrogen in Metals III , 1997 .

[35]  Henry Eyring,et al.  Hydrogen in metals , 1948 .