Trivial, Tractable, Hard. A Not So Sudden Complexity Jump in Neighborhood Restricted CNF Formulas

For a CNF formula F we define its 1-conflict graph as follows: Two clauses C,D ∈ F are connected by an edge if they have a nontrivial resolvent – that is, if there is a unique literal u ∈ C for which \(\bar{u} \in D\). Let lc1(F) denote the maximum degree of this graph.

[1]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[2]  Vera T. Sós,et al.  Infinite and finite sets : to Paul Erdős on his 60th birthday , 1975 .

[3]  Jan Krajícek,et al.  Bounded arithmetic, propositional logic, and complexity theory , 1995, Encyclopedia of mathematics and its applications.

[4]  Heidi Gebauer Disproof of the Neighborhood Conjecture with Implications to SAT , 2009, ESA.

[5]  L. Lovász Combinatorial problems and exercises , 1979 .

[6]  Nicolas Barnier,et al.  Solving the Kirkman's schoolgirl problem in a few seconds , 2002 .

[7]  Emo Welzl,et al.  The Lovász Local Lemma and Satisfiability , 2009, Efficient Algorithms.

[8]  Gábor Tardos,et al.  The local lemma is tight for SAT , 2010, SODA '11.

[9]  Amos Fiat,et al.  Algorithms - ESA 2009 , 2009, Lecture Notes in Computer Science.

[10]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[11]  László Lovász,et al.  Combinatorial problems and exercises (2. ed.) , 1993 .

[12]  Jirí Sgall,et al.  DNF tautologies with a limited number of occurrences of every variable , 2000, Theor. Comput. Sci..

[13]  Zsolt Tuza,et al.  One More Occurrence of Variables Makes Satisfiability Jump From Trivial to NP-Complete , 1993, SIAM J. Comput..

[14]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[15]  Stefan Szeider,et al.  A Note on Unsatisfiable k-CNF Formulas with Few Occurrences per Variable , 2006, SIAM J. Discret. Math..

[16]  Lakhdar Sais,et al.  Recovering and Exploiting Structural Knowledge from CNF Formulas , 2002, CP.

[17]  Stephen A. Cook,et al.  A short proof of the pigeon hole principle using extended resolution , 1976, SIGA.

[18]  Oliver Kullmann,et al.  On a Generalization of Extended Resolution , 1999, Discret. Appl. Math..

[19]  Armin Biere,et al.  Blocked Clause Elimination , 2010, TACAS.

[20]  Periklis A. Papakonstantinou,et al.  Time-space tradeoffs for width-parameterized SAT: Algorithms and lower bounds , 2012, Electron. Colloquium Comput. Complex..