Extracellular complexes of the hematopoietic human and mouse CSF-1 receptor are driven by common assembly principles.

[1]  Thomas Walz,et al.  Simultaneous visualization of the extracellular and cytoplasmic domains of the epidermal growth factor receptor , 2011, Nature Structural &Molecular Biology.

[2]  Dmitri I Svergun,et al.  Structural insights into the extracellular assembly of the hematopoietic Flt3 signaling complex. , 2011, Blood.

[3]  G. Haegeman,et al.  Inducible production of recombinant human Flt3 ectodomain variants in mammalian cells and preliminary crystallographic analysis of Flt3 ligand-receptor complexes. , 2011, Acta crystallographica. Section F, Structural biology and crystallization communications.

[4]  S. Okada,et al.  IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation , 2010, Cell Death and Differentiation.

[5]  L. Williams,et al.  Functional overlap but differential expression of CSF‐1 and IL‐34 in their CSF‐1 receptor‐mediated regulation of myeloid cells , 2010, Journal of leukocyte biology.

[6]  P. Focia,et al.  Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex , 2010, Proceedings of the National Academy of Sciences.

[7]  D. Hume,et al.  Pivotal Advance: Avian colony‐stimulating factor 1 (CSF‐1), interleukin‐34 (IL‐34), and CSF‐1 receptor genes and gene products , 2010, Journal of leukocyte biology.

[8]  Derek Toomre,et al.  Spatial control of EGF receptor activation by reversible dimerization on living cells , 2010, Nature.

[9]  A. Goldman,et al.  Structural determinants of growth factor binding and specificity by VEGF receptor 2 , 2010, Proceedings of the National Academy of Sciences.

[10]  J. Schlessinger,et al.  Direct contacts between extracellular membrane-proximal domains are required for VEGF receptor activation and cell signaling , 2010, Proceedings of the National Academy of Sciences.

[11]  D. Schneider,et al.  The Single Transmembrane Domains of Human Receptor Tyrosine Kinases Encode Self-Interactions , 2009, Science Signaling.

[12]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[13]  Jorge Navaza,et al.  UROX 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions , 2009, Acta crystallographica. Section D, Biological crystallography.

[14]  S. Savvides,et al.  Efficient Production of Bioactive Recombinant Human Flt3 Ligand in E. coli , 2009, The protein journal.

[15]  J. Frank,et al.  SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs , 2008, Nature Protocols.

[16]  P. Focia,et al.  Structure of macrophage colony stimulating factor bound to FMS: Diverse signaling assemblies of class III receptor tyrosine kinases , 2008, Proceedings of the National Academy of Sciences.

[17]  M. Fritsche,et al.  Automated sample-changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33 , 2008, Journal of applied crystallography.

[18]  J. Schlessinger,et al.  Contacts between membrane proximal regions of the PDGF receptor ectodomain are required for receptor activation but not for receptor dimerization , 2008, Proceedings of the National Academy of Sciences.

[19]  L. Williams,et al.  Discovery of a Cytokine and Its Receptor by Functional Screening of the Extracellular Proteome , 2008, Science.

[20]  Giovanni Cardone,et al.  Computational resources for cryo-electron tomography in Bsoft. , 2008, Journal of structural biology.

[21]  M. Lawrence,et al.  Insulin receptor structure and its implications for the IGF-1 receptor. , 2007, Current opinion in structural biology.

[22]  D. Nikolov,et al.  Cell-cell signaling via Eph receptors and ephrins. , 2007, Current opinion in cell biology.

[23]  Joseph Schlessinger,et al.  Structural Basis for Activation of the Receptor Tyrosine Kinase KIT by Stem Cell Factor , 2007, Cell.

[24]  N. K. Williams,et al.  The 2.7 A crystal structure of the autoinhibited human c-Fms kinase domain. , 2007, Journal of molecular biology.

[25]  David J. Harvey,et al.  Glycoprotein Structural Genomics: Solving the Glycosylation Problem , 2007, Structure.

[26]  M. Steinmetz,et al.  Structure of a VEGF–VEGF receptor complex determined by electron microscopy , 2007, Nature Structural &Molecular Biology.

[27]  P. Focia,et al.  Structural basis for stem cell factor–KIT signaling and activation of class III receptor tyrosine kinases , 2007, The EMBO journal.

[28]  Mark R Player,et al.  Crystal Structure of the Tyrosine Kinase Domain of Colony-stimulating Factor-1 Receptor (cFMS) in Complex with Two Inhibitors* , 2006, Journal of Biological Chemistry.

[29]  Weixian Lu,et al.  A time- and cost-efficient system for high-level protein production in mammalian cells. , 2006, Acta crystallographica. Section D, Biological crystallography.

[30]  K. Hristova,et al.  Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. , 2006, Biochemistry.

[31]  E. Stanley,et al.  Colony-stimulating factor-1 in immunity and inflammation. , 2006, Current opinion in immunology.

[32]  Dmitri I Svergun,et al.  Global rigid body modeling of macromolecular complexes against small-angle scattering data. , 2005, Biophysical journal.

[33]  B. Brooks,et al.  Self-guided Langevin dynamics simulation method , 2003 .

[34]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[35]  Dmitri I. Svergun,et al.  Uniqueness of ab initio shape determination in small-angle scattering , 2003 .

[36]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[37]  D I Svergun,et al.  Determination of domain structure of proteins from X-ray solution scattering. , 2001, Biophysical journal.

[38]  J. Schlessinger,et al.  Cell Signaling by Receptor Tyrosine Kinases , 2000, Cell.

[39]  A. Joachimiak,et al.  Crystal structure of human stem cell factor: implication for stem cell factor receptor dimerization and activation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Xuliang Jiang,et al.  Structure of the active core of human stem cell factor and analysis of binding to its receptor Kit , 2000, The EMBO journal.

[41]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[42]  D I Svergun,et al.  Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. , 1999, Biophysical journal.

[43]  C. March,et al.  Structure-Function Analysis of FLT3 Ligand-FLT3 Receptor Interactions Using a Rapid Functional Screen* , 1998, The Journal of Biological Chemistry.

[44]  Charles Eigenbrot,et al.  Crystal Structure at 1.7 Å Resolution of VEGF in Complex with Domain 2 of the Flt-1 Receptor , 1997, Cell.

[45]  I. Lax,et al.  Kit Receptor Dimerization Is Driven by Bivalent Binding of Stem Cell Factor* , 1997, The Journal of Biological Chemistry.

[46]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[47]  J. Pandit,et al.  Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor. , 1992, Science.

[48]  F. Winkler,et al.  Crystal structure of human platelet‐derived growth factor BB. , 1992, The EMBO journal.

[49]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[50]  S. Lev,et al.  A recombinant ectodomain of the receptor for the stem cell factor (SCF) retains ligand-induced receptor dimerization and antagonizes SCF-stimulated cellular responses. , 1992, Journal of Biological Chemistry.

[51]  E. Stanley,et al.  Role of dimerization and modification of the CSF‐1 receptor in its activation and internalization during the CSF‐1 response. , 1991, The EMBO journal.

[52]  J. Downing,et al.  A point mutation in the extracellular domain of the human CSF-1 receptor (c-fms proto-oncogene product) activates its transforming potential , 1988, Cell.

[53]  S. Savvides,et al.  Structural insights into the extracellular assembly of the hematopoietic Flt 3 signaling complex , 2011 .

[54]  Bernard R Brooks,et al.  A core-weighted fitting method for docking atomic structures into low-resolution maps: application to cryo-electron microscopy. , 2003, Journal of structural biology.

[55]  J. Monahan,et al.  Progenipoietins: biological characterization of a family of dual agonists of fetal liver tyrosine kinase-3 and the granulocyte colony-stimulating factor receptor. , 2001, Experimental hematology.

[56]  P. Andrew Karplus,et al.  Flt3 ligand structure and unexpected commonalities of helical bundles and cystine knots , 2000, Nature Structural Biology.

[57]  M van Heel,et al.  A new generation of the IMAGIC image processing system. , 1996, Journal of structural biology.

[58]  J. Schlessinger,et al.  Signaling by Receptor Tyrosine Kinases , 1993 .