Cosmological Redshift Distortion: Deceleration, Bias, and Density Parameters from Future Redshift Surveys of Galaxies

The observed two-point correlation functions of galaxies in redshift space become anisotropic because of the geometry of the universe, as well as because of the presence of the peculiar velocity field. On the basis of linear perturbation theory, we expand the induced anisotropies of the correlation functions with respect to the redshift z and obtain analytic formulae to infer the deceleration parameter q0, the density parameter Ω0, and the derivative of the bias parameter d ln b/dz at z = 0 in terms of the observable statistical quantities. The present method does not require any assumption of the shape and amplitude of the underlying fluctuation spectrum and thus can be applied to future redshift surveys of galaxies, including the Sloan Digital Sky Survey. We also evaluate quantitatively the systematic error in estimating the value of β0 ≡ Ω00.6/b from a galaxy redshift survey on the basis of a conventional estimator for β0, which neglects both the geometrical distortion effect and the time evolution of the parameter β(z). If the magnitude limit of the survey is as faint as 18.5 (in B band) as in the case of the Sloan Digital Sky Survey, the systematic error ranges between -20% and 10% depending on the cosmological parameters. Although such systematic errors are smaller than the statistical errors in the current surveys, they will definitely dominate the expected statistical error for future surveys.

[1]  A. P. Oates,et al.  The Durham/UKST Galaxy Redshift Survey — I. Large-scale structure in the Universe , 1996 .

[2]  A. Heavens,et al.  Measuring the cosmological constant with redshift surveys , 1996, astro-ph/9605017.

[3]  T. Matsubara,et al.  Cosmological Redshift Distortion of Correlation Functions as a Probe of the Density Parameter and the Cosmological Constant , 1996, astro-ph/9604142.

[4]  S. Maddox,et al.  The Stromlo-APM Redshift Survey. III. Redshift Space Distortions, Omega, and Bias , 1995, astro-ph/9505099.

[5]  S. Shectman,et al.  The Las Campanas Redshift Survey , 1996, astro-ph/9604167.

[6]  Takashi Ichikawa,et al.  GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .

[7]  B. Ryden Measuring Q 0 from the Distortion of Voids in Redshift Space , 1995, astro-ph/9506028.

[8]  J. Willick,et al.  The density and peculiar velocity fields of nearby galaxies , 1995, astro-ph/9502079.

[9]  D. Weinberg,et al.  Constraints on Omega from the IRAS redshift surveys , 1994, astro-ph/9412062.

[10]  L. Guzzo,et al.  in Wide Field Spectroscopy and the Distant Universe , 1995 .

[11]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[12]  D. Weinberg,et al.  Fourier analysis of redshift-space distortions and the determination of Ω , 1993, astro-ph/9308003.

[13]  P. Peebles Principles of Physical Cosmology , 1993 .

[14]  S. Maddox,et al.  The Stromlo-APM redshift survey. I: The luminosity function and space density of galaxies , 1992 .

[15]  A. Hamilton Measuring Omega and the real correlation function from the redshift correlation function , 1992 .

[16]  Joel R. Primack,et al.  Dynamical effects of the cosmological constant. , 1991 .

[17]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[18]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[19]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[20]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[21]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[22]  B. Paczyński,et al.  An evolution free test for non-zero cosmological constant , 1979, Nature.