A molecular mechanics approach for analyzing tensile nonlinear deformation behavior of single-walled carbon nanotubes

In this paper, by capturing the atomic information and reflecting the behaviour governed by the nonlinear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single-walled carbon nanotubes (SWCNT’s) is established to describe the nonlinear stress-strain curve of SWCNT’s and to predict both the elastic properties and breaking strain of SWCNT’s during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an acceptable analytical method for analyzing the mechanical behavior of SWCNT’s.

[1]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[2]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[3]  Chunyu Li,et al.  Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators , 2004 .

[4]  Tsu-Wei Chou,et al.  Elastic properties of single-walled carbon nanotubes in transverse directions , 2004 .

[5]  Tsu-Wei Chou,et al.  Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach , 2004 .

[6]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[7]  Tsu-Wei Chou,et al.  Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces , 2003 .

[8]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[9]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[10]  Tienchong Chang,et al.  Nonlinear stick-spiral model for predicting mechanical behavior of single-walled carbon nanotubes , 2006 .

[11]  Chunyu Li,et al.  Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators , 2003 .

[12]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[13]  Nan Yao,et al.  Young’s modulus of single-walled carbon nanotubes , 1998 .

[14]  Boris I. Yakobson,et al.  High strain rate fracture and C-chain unraveling in carbon nanotubes , 1997 .

[15]  Chunyu Li,et al.  Mass detection using carbon nanotube-based nanomechanical resonators , 2004 .

[16]  Huajian Gao,et al.  Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model , 2003 .

[17]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[18]  S. Shi,et al.  Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage , 2002 .

[19]  M. Hartmann Molecular mechanics. Von ULRICH BURKERT und NORMAN L. ALLINGER. ACS Monograph 177. Washington: American Chemical Society 1982. 430 S., US $ 77.95 , 1984 .

[20]  Zhengwei Pan,et al.  Tensile tests of ropes of very long aligned multiwall carbon nanotubes , 1999 .

[21]  Xingming Guo,et al.  Chirality- and size-dependent elastic properties of single-walled carbon nanotubes , 2005 .

[22]  Tienchong Chang,et al.  Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.