Intersection-Based Road User Tracking Using a Classifying Multiple-Model PHD Filter

The number of fatal accidents involving pedestrians and bikers at urban intersections is still increasing. Therefore, an intersection-based perception system provides a dynamic model of the intersection scene to the vehicles. Based on that, the intersection perception facilitates to discriminate occlusions which is expected to significantly reduce the number of accidents at intersections. Therefore this contribution presents a general purpose multi-sensor tracking algorithm, the classifying multiple-model probability hypothesis density (CMMPHD) filter, which facilitates the tracking and classification of relevant objects using a single filter. Due to the different motion characteristics, a multiple-model approach is required to obtain accurate state estimates and persistent tracks for all types of objects. Additionally, an extension of the PHD filter to handle contradictory measurements of different sensor types based on the Dempster-Shafer theory of evidence is proposed. The performance of tracking and classification is evaluated using real world sensor data of a public intersection.

[1]  Roland Siegwart,et al.  A Layered Approach to People Detection in 3D Range Data , 2010, AAAI.

[2]  Zhigang Luo,et al.  NeNMF: An Optimal Gradient Method for Nonnegative Matrix Factorization , 2012, IEEE Transactions on Signal Processing.

[3]  Ba-Ngu Vo,et al.  Convergence Analysis of the Gaussian Mixture PHD Filter , 2007, IEEE Transactions on Signal Processing.

[4]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[5]  Eric F Lock,et al.  JOINT AND INDIVIDUAL VARIATION EXPLAINED (JIVE) FOR INTEGRATED ANALYSIS OF MULTIPLE DATA TYPES. , 2011, The annals of applied statistics.

[6]  Feiping Nie,et al.  Improved MinMax Cut Graph Clustering with Nonnegative Relaxation , 2010, ECML/PKDD.

[7]  R.P.S. Mahler,et al.  "Statistics 101" for multisensor, multitarget data fusion , 2004, IEEE Aerospace and Electronic Systems Magazine.

[8]  Vikas Sindhwani,et al.  Fast Conical Hull Algorithms for Near-separable Non-negative Matrix Factorization , 2012, ICML.

[9]  Stephan Reuter,et al.  Multi-object tracking using random finite sets , 2014 .

[10]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[11]  Ba-Ngu Vo,et al.  A Multiple Model Probability Hypothesis Density Tracker for Time-Lapse Cell Microscopy Sequences , 2013, IPMI.

[12]  K. Punithakumar,et al.  Multiple-model probability hypothesis density filter for tracking maneuvering targets , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Arthur P. Dempster,et al.  A Generalization of Bayesian Inference , 1968, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[14]  W. Marsden I and J , 2012 .

[15]  Wolfram Burgard,et al.  Using Boosted Features for the Detection of People in 2D Range Data , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[16]  Y. Bar-Shalom Tracking and data association , 1988 .

[17]  Thierry Bouwmans,et al.  Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey , 2008 .

[18]  Liqing Zhang,et al.  Kernelization of Tensor-Based Models for Multiway Data Analysis: Processing of Multidimensional Structured Data , 2013, IEEE Signal Processing Magazine.

[19]  Klaus C. J. Dietmayer,et al.  Vehicle detection and tracking at intersections by fusing multiple camera views , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[20]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[21]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[22]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[23]  Mark D. Plumbley,et al.  Theorems on Positive Data: On the Uniqueness of NMF , 2008, Comput. Intell. Neurosci..

[24]  Chao Liu,et al.  Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce , 2010, WWW '10.

[25]  Daniel Alexander Meissner,et al.  A multiple model PHD approach to tracking of cars under an assumed rectangular shape , 2014, 17th International Conference on Information Fusion (FUSION).

[26]  Maurice D. Craig,et al.  Minimum-volume transforms for remotely sensed data , 1994, IEEE Trans. Geosci. Remote. Sens..

[27]  Andrzej Cichocki,et al.  Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation , 2012, IEEE Transactions on Signal Processing.

[28]  Marcus Obst,et al.  Empirical evaluation of vehicular models for ego motion estimation , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[29]  Stefan Wender Multisensorsystem zur erweiterten Fahrzeugumfelderfassung , 2008 .

[30]  Klaus C. J. Dietmayer,et al.  Divergence detectors for the δ-generalized labeled multi-Bernoulli filter , 2013, 2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[31]  Ben J. A. Kröse,et al.  Part based people detection using 2D range data and images , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  D. Bertsekas The auction algorithm: A distributed relaxation method for the assignment problem , 1988 .

[33]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[34]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[35]  Klaus C. J. Dietmayer,et al.  The Ko-PER intersection laserscanner and video dataset , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[36]  Céline Robardet,et al.  Characterizing the speed and paths of shared bicycles in Lyon , 2010, ArXiv.

[37]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[38]  Chih-Jen Lin,et al.  On the Convergence of Multiplicative Update Algorithms for Nonnegative Matrix Factorization , 2007, IEEE Transactions on Neural Networks.

[39]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[40]  Klaus C. J. Dietmayer,et al.  Pedestrian tracking using Random Finite Sets , 2011, 14th International Conference on Information Fusion.

[41]  Joel A. Tropp,et al.  Factoring nonnegative matrices with linear programs , 2012, NIPS.

[42]  Klaus C. J. Dietmayer,et al.  Cooperative multi sensor network for traffic safety applications at intersections , 2012, 2012 15th International IEEE Conference on Intelligent Transportation Systems.

[43]  Y. Ho,et al.  A Bayesian approach to problems in stochastic estimation and control , 1964 .

[44]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[45]  Ryosuke Shibasaki,et al.  Sensing an intersection using a network of laser scanners and video cameras , 2009, IEEE Intelligent Transportation Systems Magazine.

[46]  Klaus C. J. Dietmayer,et al.  Information Maps: A Practical Approach to Position Dependent Parameterization , 2013, ArXiv.

[47]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[48]  Max Donath,et al.  The Minnesota Mobile Intersection Surveillance System , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[49]  Ba-Ngu Vo,et al.  CPHD Filtering With Unknown Clutter Rate and Detection Profile , 2011, IEEE Transactions on Signal Processing.

[50]  Klaus C. J. Dietmayer,et al.  Fuzzy estimation and segmentation for laser range scans , 2009, 2009 12th International Conference on Information Fusion.

[51]  Craig Shankwitz,et al.  The Design of an Optimal Surveillance System for a Cooperative Collision Avoidance System – Stop Sign Assist : CICAS-SSA Report # 2 Prepared by : , 2009 .

[52]  S. F. Schmidt APPLICATION OF STATISTICAL FILTER THEORY TO THE OPTIMAL ESTIMATION OF POSITION AND VELOCITY ON BOARD A CIRCUMLUNAR VEHICLE , 2022 .

[53]  Nikos D. Sidiropoulos,et al.  Non-Negative Matrix Factorization Revisited: Uniqueness and Algorithm for Symmetric Decomposition , 2014, IEEE Transactions on Signal Processing.

[54]  Zhaoshui He,et al.  Minimum-Volume-Constrained Nonnegative Matrix Factorization: Enhanced Ability of Learning Parts , 2011, IEEE Transactions on Neural Networks.

[55]  Vince D. Calhoun,et al.  Capturing group variability using IVA: A simulation study and graph-theoretical analysis , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[56]  Victoria Stodden,et al.  When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts? , 2003, NIPS.

[57]  Robin J. Evans,et al.  Integrated probabilistic data association , 1994, IEEE Trans. Autom. Control..

[58]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[59]  Ulrich Hofmann,et al.  360 Degree multi sensor fusion for static and dynamic obstacles , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[60]  Ba-Ngu Vo,et al.  Adaptive Target Birth Intensity for PHD and CPHD Filters , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[61]  Ba-Ngu Vo,et al.  The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations , 2009, IEEE Transactions on Signal Processing.

[62]  Klaus C. J. Dietmayer,et al.  Cardinality balanced multi-target multi-Bernoulli filtering using adaptive birth distributions , 2013, Proceedings of the 16th International Conference on Information Fusion.

[63]  Klaus C. J. Dietmayer,et al.  Real-time detection and tracking of pedestrians at intersections using a network of laserscanners , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[64]  Cristiano Premebida,et al.  Exploiting LIDAR-based features on pedestrian detection in urban scenarios , 2009, 2009 12th International IEEE Conference on Intelligent Transportation Systems.

[65]  S. Julier,et al.  A General Method for Approximating Nonlinear Transformations of Probability Distributions , 1996 .

[66]  Pierre Comon,et al.  Nonnegative approximations of nonnegative tensors , 2009, ArXiv.

[67]  Klaus C. J. Dietmayer,et al.  Simulation and calibration of infrastructure based laser scanner networks at intersections , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[68]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[69]  Klaus C. J. Dietmayer,et al.  Tracking and data segmentation using a GGIW filter with mixture clustering , 2014, 17th International Conference on Information Fusion (FUSION).

[70]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[71]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[72]  Michael Himmelsbach,et al.  Fast segmentation of 3D point clouds for ground vehicles , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[73]  Klaus C. J. Dietmayer,et al.  High-performance on-road vehicle detection in monocular images , 2013, 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).

[74]  Klaus C. J. Dietmayer,et al.  Generic Centralized Multi Sensor Data Fusion Based on Probabilistic Sensor and Environment Models for Driver Assistance Systems , 2010, IEEE Intelligent Transportation Systems Magazine.

[75]  Ronald P. S. Mahler The multisensor PHD filter: I. General solution via multitarget calculus , 2009, Defense + Commercial Sensing.

[76]  Thomas S. Huang,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation. , 2011, IEEE transactions on pattern analysis and machine intelligence.

[77]  Haesun Park,et al.  Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework , 2014, J. Glob. Optim..

[78]  Syed Ahmed Pasha,et al.  A Gaussian Mixture PHD Filter for Jump Markov System Models , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[79]  Runze Li,et al.  Regularization Parameter Selections via Generalized Information Criterion , 2010, Journal of the American Statistical Association.

[80]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[81]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[82]  Klaus C. J. Dietmayer,et al.  Multi-object tracking using labeled multi-Bernoulli random finite sets , 2014, 17th International Conference on Information Fusion (FUSION).

[83]  Wolfram Burgard,et al.  Multi-Level Surface Maps for Outdoor Terrain Mapping and Loop Closing , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[84]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[85]  Klaus C. J. Dietmayer,et al.  Grid-based DBSCAN for clustering extended objects in radar data , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[86]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[87]  Ronald P. S. Mahler,et al.  Approximate multisensor CPHD and PHD filters , 2010, 2010 13th International Conference on Information Fusion.

[88]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[89]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[90]  Chris H. Q. Ding,et al.  Convex and Semi-Nonnegative Matrix Factorizations , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[91]  Daniel E. Clark,et al.  On the ordering of the sensors in the iterated-corrector probability hypothesis density (PHD) filter , 2011, Defense + Commercial Sensing.

[92]  Vince D. Calhoun,et al.  A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data , 2009, NeuroImage.

[93]  Klaus C. J. Dietmayer,et al.  Multi-object tracking at intersections using the cardinalized probability hypothesis density filter , 2012, 2012 15th International IEEE Conference on Intelligent Transportation Systems.

[94]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[95]  Y. Bar-Shalom,et al.  Multiple-model estimation with variable structure , 1996, IEEE Trans. Autom. Control..

[96]  Peter Willett,et al.  The Multiple Model CPHD Tracker , 2012, IEEE Transactions on Signal Processing.

[97]  Haesun Park,et al.  Fast Nonnegative Tensor Factorization with an Active-Set-Like Method , 2012, High-Performance Scientific Computing.

[98]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[99]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[100]  Yaakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Applications and Advances , 1992 .

[101]  Jizhong Xiao,et al.  Multi-volume occupancy grids: An efficient probabilistic 3D mapping model for micro aerial vehicles , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[102]  Andrzej Cichocki,et al.  Common and Individual Features Analysis: Beyond Canonical Correlation Analysis , 2012, ArXiv.

[103]  Ba-Ngu Vo,et al.  The GM-PHD Filter Multiple Target Tracker , 2006, 2006 9th International Conference on Information Fusion.

[104]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[105]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[106]  Wolfram Burgard,et al.  OctoMap : A Probabilistic , Flexible , and Compact 3 D Map Representation for Robotic Systems , 2010 .

[107]  Andrzej Cichocki,et al.  Canonical Polyadic Decomposition Based on a Single Mode Blind Source Separation , 2012, IEEE Signal Processing Letters.

[108]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[109]  Hao Chen,et al.  Joint spatial registration and multi-target tracking using an extended probability hypothesis density filter , 2011 .

[110]  Michael Goldhammer,et al.  Early prediction of a pedestrian's trajectory at intersections , 2013, 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).

[111]  Chris H. Q. Ding,et al.  Orthogonal nonnegative matrix t-factorizations for clustering , 2006, KDD '06.

[112]  Inderjit S. Dhillon,et al.  Fast coordinate descent methods with variable selection for non-negative matrix factorization , 2011, KDD.

[113]  Rasmus Bro,et al.  Improving the speed of multiway algorithms: Part II: Compression , 1998 .

[114]  Darko Musicki,et al.  Joint Integrated Probabilistic Data Association - JIPDA , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[115]  Klaus C. J. Dietmayer,et al.  Road user tracking at intersections using a multiple-model PHD filter , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[116]  Haesun Park,et al.  Fast Nonnegative Matrix Factorization: An Active-Set-Like Method and Comparisons , 2011, SIAM J. Sci. Comput..

[117]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[118]  B. Vo,et al.  Data Association and Track Management for the Gaussian Mixture Probability Hypothesis Density Filter , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[119]  Nicolas Gillis,et al.  Sparse and unique nonnegative matrix factorization through data preprocessing , 2012, J. Mach. Learn. Res..

[120]  J. Kacprzyk,et al.  Advances in the Dempster-Shafer theory of evidence , 1994 .

[121]  Christian Bauckhage,et al.  Convex Non-negative Matrix Factorization in the Wild , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[122]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[123]  Ronald P. S. Mahler,et al.  Multitarget miss distance via optimal assignment , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[124]  Philippe Smets,et al.  The Transferable Belief Model , 1991, Artif. Intell..

[125]  Alexandra Neukum,et al.  Advisory warnings based on cooperative perception , 2014, 2014 IEEE Intelligent Vehicles Symposium Proceedings.

[126]  Klaus C. J. Dietmayer,et al.  Road user tracking using a Dempster-Shafer based classifying multiple-model PHD filter , 2013, Proceedings of the 16th International Conference on Information Fusion.

[127]  Klaus C. J. Dietmayer,et al.  Stationary Detection of the Pedestrian?s Intention at Intersections , 2013, IEEE Intelligent Transportation Systems Magazine.

[128]  Paul I. Barton,et al.  Global optimization of bounded factorable functions with discontinuities , 2013, J. Glob. Optim..

[129]  Subhash Challa,et al.  An Introduction to Bayesian and Dempster-Shafer Data Fusion , 2003 .

[130]  Vince D. Calhoun,et al.  Joint Blind Source Separation by Multiset Canonical Correlation Analysis , 2009, IEEE Transactions on Signal Processing.

[131]  Pierre Comon,et al.  Computing the polyadic decomposition of nonnegative third order tensors , 2011, Signal Process..

[132]  Philippe Smets,et al.  The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[133]  Ba Tuong Vo,et al.  Tracking, identification, and classification with random finite sets , 2013, Defense, Security, and Sensing.

[134]  Jeremie Houssineau,et al.  PHD filter with diffuse spatial prior on the birth process with applications to GM-PHD filter , 2010, 2010 13th International Conference on Information Fusion.

[135]  Andrzej Cichocki,et al.  Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations , 2013, IEEE Transactions on Signal Processing.

[136]  Gerd Wanielik,et al.  Unifying Bayesian networks and IMM filtering for improved multiple model estimation , 2009, 2009 12th International Conference on Information Fusion.

[137]  Karl Granström,et al.  Estimation and maintenance of measurement rates for multiple extended target tracking , 2012, 2012 15th International Conference on Information Fusion.

[138]  Stephan Reuter,et al.  Combining the 2D and 3D world: A new approach for point cloud based object detection , 2013 .

[139]  Daniel E. Clark,et al.  Incorporating track uncertainty into the OSPA metric , 2011, 14th International Conference on Information Fusion.

[140]  Ba-Ngu Vo,et al.  Bayesian Filtering With Random Finite Set Observations , 2008, IEEE Transactions on Signal Processing.

[141]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[142]  P. Kalata,et al.  The tracking index: A generalized parameter for α-β and α-β-γ target trackers , 1983, The 22nd IEEE Conference on Decision and Control.

[143]  Mirko Mählisch,et al.  Filtersynthese zur simultanen Minimierung von Existenz-, Assoziations- und Zustandsunsicherheiten in der Fahrzeugumfelderfassung mit heterogenen Sensordaten , 2010 .

[144]  Michael Mertens,et al.  Tracking and Data Fusion for Ground Surveillance , 2014 .

[145]  Nicolas Gillis,et al.  Fast and Robust Recursive Algorithmsfor Separable Nonnegative Matrix Factorization , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[146]  Daniel E. Clark,et al.  Generalized PHD filters via a general chain rule , 2012, 2012 15th International Conference on Information Fusion.

[147]  Roland Chapuis,et al.  Dealing with occlusions with multi targets tracking algorithms for the real road context , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[148]  Peter Willett,et al.  Classification aided cardinalized probability hypothesis density filter , 2012, Defense + Commercial Sensing.

[149]  Peter Willett,et al.  Gaussian mixture cardinalized PHD filter for ground moving target tracking , 2007, 2007 10th International Conference on Information Fusion.

[150]  Ronald P. S. Mahler On multitarget jump-Markov filters , 2012, 2012 15th International Conference on Information Fusion.

[151]  Markus Maurer,et al.  Object tracking in urban intersections based on active use of a priori knowledge: Active interacting multi model filter , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[152]  Nico Kämpchen,et al.  Feature-level fusion of laser scanner and video data for advanced driver assistance systems , 2007 .

[153]  Johan Degerman,et al.  Multi-target tracking with background discrimination using PHD filters , 2012, 2012 15th International Conference on Information Fusion.

[154]  Andrzej Cichocki,et al.  Accelerated Canonical Polyadic Decomposition Using Mode Reduction , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[155]  Michael Himmelsbach,et al.  Tracking and classification of arbitrary objects with bottom-up/top-down detection , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[156]  Juan Andrade-Cetto,et al.  Segmentation of Dynamic Objects from Laser Data , 2011, ECMR.

[157]  Jitendra Malik,et al.  Robust Multiple Car Tracking with Occlusion Reasoning , 1994, ECCV.

[158]  Thierry Chateau,et al.  Pedestrian Detection and Tracking in an Urban Environment Using a Multilayer Laser Scanner , 2010, IEEE Transactions on Intelligent Transportation Systems.

[159]  Lotfi A. Zadeh,et al.  On the Validity of Dempster''s Rule of Combination of Evidence , 1979 .

[160]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[161]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[162]  Gordon Wetzstein,et al.  Tensor displays , 2012, ACM Trans. Graph..

[163]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[164]  Martin T. Pietrucha,et al.  FIELD STUDIES OF PEDESTRIAN WALKING SPEED AND START-UP TIME , 1996 .

[165]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[166]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[167]  Lars Kai Hansen,et al.  Algorithms for Sparse Nonnegative Tucker Decompositions , 2008, Neural Computation.

[168]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[169]  Dominique Heurguier,et al.  Multi-sensor PHD: Construction and implementation by space partitioning , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[170]  Ulrich Brunsmann,et al.  Gpu architecture for stationary multisensor pedestrian detection at smart intersections , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[171]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[172]  Chun-Jen Chen,et al.  A linear-time component-labeling algorithm using contour tracing technique , 2004, Comput. Vis. Image Underst..