A spectrophotometric study of aqueous copper(I)-chloride complexes in LiCl solutions between 100°C and 250°C.

[1]  J. Setschenow Über die Konstitution der Salzlösungen auf Grund ihres Verhaltens zu Kohlensäure , 1889 .

[2]  Jacob Kielland Individual Activity Coefficients of Ions in Aqueous Solutions , 1937 .

[3]  A. Gahler Colorimetric Determination of Copper with Neo-Cuproine , 1954 .

[4]  A. Glasner,et al.  Absorption Bands of Cuprous and Cupric Salts in Concentrated Alkali Halide Solutions, and Their Analytical Implications , 1961 .

[5]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[6]  N. Draper,et al.  Applied Regression Analysis , 1967 .

[7]  H. Helgeson,et al.  Thermodynamics of hydrothermal systems at elevated temperatures and pressures , 1969 .

[8]  Michael J. Blandamer,et al.  Theory and applications of charge-transfer-to-solvent spectra , 1970 .

[9]  N. A. Sörensen,et al.  The Stability of Metal Halide Complexes in Aqueous Solution. VII. The Chloride Complexes of Copper(I). , 1970 .

[10]  晴夫 疋田,et al.  塩酸溶液中への塩化銅(I)の溶解度と溶液内でのクロロ錯体の生成平衡 , 1973 .

[11]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures , 1974 .

[12]  H. Barnes,et al.  Ore solution chemistry; V, Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 degrees to 350 degrees C , 1976 .

[13]  K. Sugasaka,et al.  A Spectrophotometric Study of Copper(I) Chloro-Complexes in Aqueous 5M Na(Cl, ClO4) Solutions , 1976 .

[14]  A. Rose The effect of cuprous chloride complexes in the origin of red-bed copper and related deposits , 1976 .

[15]  T. Seward The stability of chloride complexes of Silver in hydrothermal solutions up to 350°C , 1976 .

[16]  J. Hunt,et al.  Porphyry copper deposits , 1977, Geological Society, London, Special Publications.

[17]  C. R. Davis,et al.  Photooxidation of dichloro- and trichlorocuprate(I) ions in acid solution , 1978 .

[18]  J. J. Fritz Chloride complexes of copper(I) chloride in aqueous solution , 1980 .

[19]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[20]  R. Mesmer,et al.  Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250.degree.C , 1983 .

[21]  T. Seward,et al.  The formation of lead(II) chloride complexes to 300°C: A spectrophotometric study , 1984 .

[22]  D. W. Haynes Stratiform copper deposits hosted by low-energy sediments; II, Nature of source rocks and composition of metal-transporting water , 1986 .

[23]  D. W. Haynes,et al.  Stratiform copper deposits hosted by low-energy sediments; IV, Aspects of sulfide precipitation , 1987 .

[24]  D. W. Haynes,et al.  Stratiform copper deposits hosted by low-energy sediments; III, Aspects of metal transport , 1987 .

[25]  D. Sverjensky The role of migrating oil field brines in the formation of sediment-hosted Cu-rich deposits , 1987 .

[26]  K. Hodgson,et al.  X-ray absorption edge determination of the oxidation state and coordination number of copper: application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen , 1987 .

[27]  J. R. Ruaya Estimation of instability constants of metal chloride complexes in hydrothermal solutions up to 300°C , 1988 .

[28]  Enric Casassas,et al.  Application of principal component analysis to the study of multiple equilibria systems : Study of copper(II)/salicylate/mono-, di- and triethanolamine systems , 1989 .

[29]  V. Majer,et al.  Volumetric properties of LiCl(aq) from 0.05 to 3.0 mol·kg−1, 322 to 550 K, and 0.8 to 32.6 MPa , 1989 .

[30]  V. Sharma,et al.  Equilibrium constants for the formation of Cu(I) halide complexes , 1990 .

[31]  C. Heinrich,et al.  A spectrophotometric study of aqueous iron (II) chloride complexing from 25 to 200°C , 1990 .

[32]  J. Schott,et al.  The density model for estimation of thermodynamic parameters of reactions at high temperatures and pressures , 1991 .

[33]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[34]  G. Robinson,et al.  Hydrothermal ore-forming processes in the light of studies in rock-buffered systems; I, Iron-copper-zinc-lead sulfide solubility relations , 1992 .

[35]  R. Tauler,et al.  Application of factor analysis to speciation in multiequilibria systems , 1992 .

[36]  Α. Pfitzner,et al.  The systems CUCl-M11Cl2 (Μ = Mn, Cd) - crystal structures of Cu2MnCl4 and γ-CuCl , 1993 .

[37]  William E Seyfried,et al.  The effect of redox on the relative solubilities of copper and iron in Cl-bearing aqueous fluids at elevated temperatures and pressures: An experimental study with application to subseafloor hydrothermal systems , 1993 .

[38]  S. Hull,et al.  High-pressure polymorphism of the copper(I) halides: A neutron-diffraction study to ~10 GPa. , 1994, Physical review. B, Condensed matter.

[39]  Susan E. Humphris,et al.  Seafloor hydrothermal systems : physical, chemical, biological, and geological interactions , 1995 .

[40]  H. Helgeson,et al.  Calculation of the standard partial molal thermodynamic properties of KCl0 and activity coefficients of aqueous KCl at temperatures and pressures to 1000°C and 5 kbar , 1997 .

[41]  Romà Tauler,et al.  Assessment of new constraints applied to the alternating least squares method , 1997 .

[42]  Everett L. Shock,et al.  Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb , 1997 .

[43]  A. Williams-Jones,et al.  Experimental study of copper(I) chloride complexing in hydrothermal solutions at 40 to 300°C and saturated water vapor pressure , 1998 .

[44]  T. Seward,et al.  Spectrophotometric determination of the stability of thallium (I) chloride complexes in aqueous solution up to 200°C , 1998 .

[45]  A. Hezarkhani,et al.  Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran; evidence from fluid inclusions and stable isotopes , 1998 .

[46]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .

[47]  M. Iuliano,et al.  Copper(I) chloride complexes in aqueous solution , 1998 .

[48]  A. Hezarkhani,et al.  Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran , 1999 .

[49]  D. Günther,et al.  Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits , 1999, Nature.

[50]  T. Seward,et al.  The hydrosulphide/sulphide complexes of copper(I): experimental determination of stoichiometry and stability at 22°c and reassessment of high temperature data , 1999 .

[51]  E. Stern,et al.  Copper(I) and Copper(II) Coordination Structure under Hydrothermal Conditions at 325 °C: An X-ray Absorption Fine Structure and Molecular Dynamics Study , 2000 .

[52]  J. Fulton,et al.  An X-ray absorption fine structure study of copper(I) chloride coordination structure in water up to 325°C , 2000 .

[53]  L. Spiccia,et al.  Complexation of metal ions in brines: application of electronic spectroscopy in the study of the Cu(II)-LiCl-H , 2001 .

[54]  J. Brugger,et al.  An experimental study of copper(I)-chloride and copper(I)-acetate complexing in hydrothermal solutions between 50°C and 250°C and vapor-saturated pressure , 2001 .