Kleene Algebra with Tests and Commutativity Conditions

We give an equational proof, using Kleene algebra with tests and commutativity conditions, of the following classical result: every while program can be simulated by a while program with at most one while loop. The proof illustrates the use of Kleene algebra with extra conditions in program equivalence proofs. We also show, using a construction of Cohen, that the universal Horn theory of *-continuous Kleene algebras is not finitely axiomatizable.

[1]  V N Redko,et al.  On the determinative aggregate of relationships of the algebra of regular events , 1964 .

[2]  Dexter Kozen,et al.  On Induction vs. *-Continuity , 1981, Logic of Programs.

[3]  Werner Kuich,et al.  The Kleene and the Parikh Theorem in Complete Semirings , 1987, ICALP.

[4]  Roland Carl Backhouse Closure algorithms and the star-height problem of regular languages , 1976 .

[5]  Vaughan R. Pratt,et al.  Action Logic and Pure Induction , 1990, JELIA.

[6]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[7]  Jacques Sakarovitch Kleene's theorem revisited , 1986, IMYCS.

[8]  Daniel Krob,et al.  Complete Systems of B-Rational Identities , 1991, Theor. Comput. Sci..

[9]  Arto Salomaa,et al.  Two Complete Axiom Systems for the Algebra of Regular Events , 1966, JACM.

[10]  J. Conway Regular algebra and finite machines , 1971 .

[11]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[12]  Daniel Krob,et al.  A Complete System of B-Rational Identities , 1990, ICALP.

[13]  Zoltán Ésik,et al.  Equational axioms for regular sets , 1993, Mathematical Structures in Computer Science.

[14]  Ann Jennalie Cook John Horton Conway , 1981 .

[15]  Maurice Boffa,et al.  Une remarque sur les systèmes complets d'identités rationnelles , 1990, RAIRO Theor. Informatics Appl..

[16]  Arto Salomaa,et al.  Semirings, Automata and Languages , 1985 .

[17]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[18]  Dexter Kozen,et al.  On Kleene Algebras and Closed Semirings , 1990, MFCS.

[19]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[20]  Jerzy Tiuryn,et al.  Logics of Programs , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[21]  Kenneth Steiglitz,et al.  A Semiring on Convex Polygons and Zero-Sum Cycle Problems , 1990, SIAM J. Comput..

[22]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..

[23]  Dexter Kozen,et al.  The Design and Analysis of Algorithms , 1991, Texts and Monographs in Computer Science.

[24]  Vaughan R. Pratt,et al.  Dynamic algebras as a well-behaved fragment of relation algebras , 1988, Algebraic Logic and Universal Algebra in Computer Science.

[25]  Shizuo Kakutani Review: Katsumi Nakamura, On a Mode of Definition in Geometry--On Implicit Definition , 1941 .

[26]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[27]  David Harel,et al.  On folk theorems , 1980, CACM.

[28]  Yehuda Afek,et al.  Lazy caching , 1993, TOPL.

[29]  Corrado Böhm,et al.  Flow diagrams, turing machines and languages with only two formation rules , 1966, CACM.

[30]  Kan Ching Ng,et al.  Relation algebras with transitive closure , 1984 .