SAR Image Regularization With Fast Approximate Discrete Minimization

Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. Numerous approaches have been proposed to filter speckle noise. Markov random field (MRF) modelization provides a convenient way to express both data fidelity constraints and desirable properties of the filtered image. In this context, total variation minimization has been extensively used to constrain the oscillations in the regularized image while preserving its edges. Speckle noise follows heavy-tailed distributions, and the MRF formulation leads to a minimization problem involving nonconvex log-likelihood terms. Such a minimization can be performed efficiently by computing minimum cuts on weighted graphs. Due to memory constraints, exact minimization, although theoretically possible, is not achievable on large images required by remote sensing applications. The computational burden of the state-of-the-art algorithm for approximate minimization (namely the alpha -expansion) is too heavy specially when considering joint regularization of several images. We show that a satisfying solution can be reached, in few iterations, by performing a graph-cut-based combinatorial exploration of large trial moves. This algorithm is applied to joint regularization of the amplitude and interferometric phase in urban area SAR images.

[1]  T. Chan,et al.  Edge-preserving and scale-dependent properties of total variation regularization , 2003 .

[2]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Gabriel Vasile,et al.  Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Fabrizio Argenti,et al.  Speckle removal from SAR images in the undecimated wavelet domain , 2002, IEEE Trans. Geosci. Remote. Sens..

[6]  E. Nezry,et al.  Structure detection and statistical adaptive speckle filtering in SAR images , 1993 .

[7]  H. D. Ratliff,et al.  Minimum cuts and related problems , 1975, Networks.

[8]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[10]  Pierre Charbonnier,et al.  Reconstruction d''image: R'egularization avec prise en compte des discontinuit'es , 1994 .

[11]  Patrick Wambacq,et al.  Speckle filtering of synthetic aperture radar images : a review , 1994 .

[12]  J. Jao Amplitude distribution of composite terrain radar clutter and the κ-Distribution , 1984 .

[13]  Jean-Marc Boucher,et al.  Multiscale MAP filtering of SAR images , 2001, IEEE Trans. Image Process..

[14]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  F. Tupin,et al.  Smoothing speckled SAR images by using maximum homogeneous region filters: an improved approach , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[17]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[18]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[19]  Zhenyu Zhou,et al.  Approximate maximum likelihood hyperparameter estimation for Gibbs priors , 1995, Proceedings., International Conference on Image Processing.

[20]  Fulvio Gini,et al.  Feasibility study of along-track SAR interferometry with the COSMO-Skymed satellite system , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[21]  Jianing Shi,et al.  A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model , 2008, SIAM J. Imaging Sci..

[22]  G. Aubert,et al.  A VARIATIONAL APPROACH TO REMOVE MULTIPLICATIVE NOISE , 2006 .

[23]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[24]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part II: Levelable Functions, Convex Priors and Non-Convex Cases , 2006, Journal of Mathematical Imaging and Vision.

[25]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[26]  Mihai Datcu,et al.  Model-based despeckling and information extraction from SAR images , 2000, IEEE Trans. Geosci. Remote. Sens..

[27]  Roland Romeiser,et al.  Theoretical Evaluation of Several Possible Along-Track InSAR Modes of TerraSAR-X for Ocean Current Measurements , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Jong-Sen Lee,et al.  Speckle analysis and smoothing of synthetic aperture radar images , 1981 .

[29]  Ridha Touzi,et al.  A review of speckle filtering in the context of estimation theory , 2002, IEEE Trans. Geosci. Remote. Sens..

[30]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[31]  Jérôme Darbon Composants logiciels et algorithmes de minimisation exacte d'énergies dédiées au traitement des images , 2005 .

[32]  José M. Bioucas-Dias,et al.  Phase Unwrapping via Graph Cuts , 2005, IEEE Transactions on Image Processing.

[33]  Jérôme Darbon,et al.  The use of levelable regularization functions for MRF restoration of SAR images while preserving reflectivity , 2007, Electronic Imaging.

[34]  Alexander A. Sawchuk,et al.  Adaptive restoration of images with speckle , 1987, IEEE Trans. Acoust. Speech Signal Process..

[35]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[36]  Josiane Zerubia,et al.  Hyperparameter estimation for satellite image restoration using a MCMC maximum-likelihood method , 2002, Pattern Recognit..

[37]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[38]  S. Gómez,et al.  The triangle method for finding the corner of the L-curve , 2002 .

[39]  Jérôme Darbon,et al.  A Vectorial Self-dual Morphological Filter Based on Total Variation Minimization , 2005, ISVC.

[40]  J. Nicolas A fisher-MAP filter for SAR image processing , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[41]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  E. Jakeman On the statistics of K-distributed noise , 1980 .

[43]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[46]  Toke Koldborg Jensen,et al.  An adaptive pruning algorithm for the discrete L-curve criterion , 2007 .

[47]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[48]  J. Goodman Statistical Properties of Laser Speckle Patterns , 1963 .

[49]  Henri Maitre,et al.  Smoothing speckled synthetic aperture radar images by using maximum homgeneous region filters , 1992 .

[50]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[51]  V. Kolmogorov Primal-dual Algorithm for Convex Markov Random Fields , 2005 .

[52]  Nikolas P. Galatsanos,et al.  Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..

[53]  Antonin Chambolle,et al.  Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.

[54]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[55]  Patrick L. Combettes,et al.  Image restoration subject to a total variation constraint , 2004, IEEE Transactions on Image Processing.

[56]  E. Miller,et al.  Efficient determination of multiple regularization parameters in a generalized L-curve framework , 2002 .