Engineering III-V nanowires for optoelectronics: from epitaxy to terahertz photonics

Nanowires show unique promise as nanoscale building blocks for a multitude of optoelectronic devices, ranging from solar cells to terahertz photonic devices. We will discuss the epitaxial growth of these nanowires in novel geometries and crystallographic phases, and the use of terahertz conductivity spectroscopy to guide the development of nanowire-based devices. As an example, we will focus on the development of nanowire-based polarization modulators for terahertz communications systems.

[1]  Fan Wang,et al.  Single nanowire photoconductive terahertz detectors. , 2015, Nano letters.

[2]  Chennupati Jagadish,et al.  The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires , 2017 .

[3]  Chennupati Jagadish,et al.  Understanding the true shape of Au-catalyzed GaAs nanowires. , 2014, Nano letters.

[4]  Chennupati Jagadish,et al.  Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1−xAs core-shell nanowires , 2012 .

[5]  Laura M. Herz,et al.  An ultrafast carbon nanotube terahertz polarisation modulator , 2014 .

[6]  P. Krogstrup,et al.  Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.

[7]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.

[8]  Chennupati Jagadish,et al.  Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. , 2012, Nano letters.

[9]  Chennupati Jagadish,et al.  Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. , 2009, Nano letters.

[10]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[11]  Chennupati Jagadish,et al.  III–V semiconductor nanowires for optoelectronic device applications , 2013 .

[12]  Chennupati Jagadish,et al.  Phase perfection in zinc Blende and Wurtzite III-V nanowires using basic growth parameters. , 2010, Nano letters.

[13]  C. Jagadish,et al.  Tailoring GaAs, InAs, and InGaAs Nanowires for Optoelectronic Device Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Chennupati Jagadish,et al.  Engineering the Photoresponse of InAs Nanowires. , 2017, ACS applied materials & interfaces.

[15]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[16]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[17]  Chennupati Jagadish,et al.  An Ultrafast Switchable Terahertz Polarization Modulator Based on III-V Semiconductor Nanowires. , 2017, Nano letters.

[18]  Chennupati Jagadish,et al.  Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.

[19]  Lyubov V. Titova,et al.  Temperature dependence of photoluminescence from single core-shell GaAs–AlGaAs nanowires , 2006 .

[20]  Hannah J. Joyce,et al.  A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy , 2016 .