Global physical conditions of the interstellar medium in nearby galaxies

Far-infrared spectra (43{197 m) of 34 nearby galaxies obtained by the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO) were analyzed to investigate the general properties of in- terstellar matter in galaxies. The present sample includes not only normal galaxies but also starbursts and ac- tive galactic nuclei (AGNs). Far-infrared forbidden lines, such as (C ii)158 m, (O i)63 m, (N ii)122 m, and (O iii)88 m, were detected in most of the sample galaxies. (O i)145 m line was detected in 13 galaxies. The line fluxes of (C ii)158 ma nd (Nii)122 m relative to the total far-infrared flux (FIR) decrease as the far-infrared color becomes bluer, while the ratio of the (O i)63 m flux to FIR does not show a systematic trend with the color. The (O iii)88 mt oFIR ratio shows a large scatter with a weak trend of increase with the color. AGNs do not show any distinguishable trend from normal and starburst galaxies in the far-infrared spectra, suggesting that the far-infrared emission is mainly driven by star-formation activities even in AGNs. We estimate the physical conditions of photodissociation regions (PDRs) in the sample galaxies, such as the far-ultraviolet radiation eld intensity G0 and the gas density n by assuming that all the observed (O i)63 m and far-infrared continuum emissions come from PDRs. Comparison with PDR models indicates that G0 ranges from 10 2 {10 4 and n 10 2 { 10 4 cm 3 . The present results also suggest that n varies proportionally with G0. The ratio of (C ii) 158 mt o CO (J = 1{0) line emission supports the linear increase in n with G0. We estimate that about a half of (C ii)158 m emission originates from PDRs and attribute the rest to the emission as coming from low-density diuse ionized gas. The estimated intensity of (C ii)158 m from the ionized gas is compatible with the observed intensity of (N ii)122 m if both lines come from the same diuse ionized gas. The present analysis suggests that the decrease in (C ii)158 m=FIR with the far-infrared color may not be accounted for by the decrease in the photoelectric heating eciency owing to the increase in positive charges of dust grains because a measure of the eciency, G0=n, is found to stay constant with the far-infrared color. Instead the decrease can be interpreted in terms of either the increase in the collisional de-excitation of the (C ii) transition due to the increase in the gas den- sity or the decrease in the ionized component relative to the far-infrared intensity suggested by the decrease in (N ii)122 m=FIR. Based on the present analysis, we derive average relations of the far-infrared color with G0 and n in galaxies, which can be applied to the investigation of interstellar matter in distant galaxies.

[1]  C. Gry LWS - The long wavelength spectrometer , 2003 .

[2]  T. Onaka,et al.  Search for the (CII) 158 micron emission toward the blue compact dwarf galaxy I Zw 36 , 2001 .

[3]  S. Malhotra,et al.  Evidence for the Heating of Atomic Interstellar Gas by Polycyclic Aromatic Hydrocarbons , 2001 .

[4]  Stephen J. Curran,et al.  Molecular gas conditions in NGC 4945 and the Circinus galaxy , 2001 .

[5]  S. Malhotra,et al.  The Interstellar Medium of Star-forming Irregular Galaxies: The View with ISO , 2000, astro-ph/0012354.

[6]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[7]  J. Fischer Galaxies: The Long Wavelength View , 2000, astro-ph/0009395.

[8]  T. Onaka Interstellar dust: What do space observations tell us? , 2000 .

[9]  T. Nakagawa,et al.  Photon-dominated Region Models for Global Properties of the Galaxy , 2000 .

[10]  U. Berkeley,et al.  Extragalactic Results from the Infrared Space Observatory , 2000, astro-ph/0002184.

[11]  [C ii] 158-μm observations of a sample of late-type galaxies from the Virgo cluster , 1999 .

[12]  NASA Ames Research Center,et al.  Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions , 1999, astro-ph/9907255.

[13]  D. L. Bertsch,et al.  GeV emission from the nearby radio galaxy Centaurus A , 1999 .

[14]  R. Tuffs,et al.  [CII] Emission and Star Formation in Late-Type Galaxies , 1999 .

[15]  M. A. Malkan,et al.  ISO LWS Spectroscopy of M82: A Unified Evolutionary Model , 1998, astro-ph/9810188.

[16]  P. Cox,et al.  Infrared Space Observatory Measurements of a [C II] 158 Micron Line Deficitin Ultraluminous Infrared Galaxies , 1998 .

[17]  J. M. R. Espinosa,et al.  The Mid- and Far-Infrared Spectral Energy Distribution of Seyfert Galaxies , 1998 .

[18]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[19]  Michael W. Werner,et al.  Infrared Space Observatory Measurements of [C II] Line Variations in Galaxies , 1997 .

[20]  Alexander G. G. M. Tielens,et al.  Dense Photodissociation Regions (PDRs) , 1997 .

[21]  J. Cardelli,et al.  Carbon in the Diffuse Interstellar Medium , 1997 .

[22]  Beverly J. Smith,et al.  Interstellar Gas in Low Mass Virgo Cluster Spiral Galaxies , 1997, astro-ph/9704135.

[23]  N. Odegard,et al.  Detection and Characterization of Cold Interstellar Dust and Polycyclic Aromatic Hydrocarbon Emission, from COBE Observations , 1996, astro-ph/9610198.

[24]  J. Cardelli,et al.  The Abundance of Interstellar Nitrogen , 1996, astro-ph/9710162.

[25]  Beverly J. Smith,et al.  High spatial resolution kao far-infrared observations of the central regions of infrared-bright galaxies , 1996, astro-ph/9605023.

[26]  G. Helou,et al.  A 1.425 GHz Atlas of the IRAS Bright Galaxy Sample, Part II , 1996 .

[27]  John M. Carpenter,et al.  The FCRAO Extragalactic CO Survey. I. The Data , 1995 .

[28]  C. Heiles On the Origin of the Diffuse C + 158 Micron Line Emission , 1994 .

[29]  A. Tielens,et al.  THE PHOTOELECTRIC HEATING MECHANISM FOR VERY SMALL GRAPHITIC GRAINS AND POLYCYCLIC AROMATIC HYDROCARBONS , 1994 .

[30]  C. Bennett,et al.  The N (II) 205 micron line in M82: The warm ionized medium , 1994 .

[31]  M. R. Haas,et al.  The interstellar medium in the starburst regions of NGC 253 and NGC 3256 , 1994 .

[32]  Jr.,et al.  MORPHOLOGY OF THE INTERSTELLAR COOLING LINES DETECTED BY COBE , 1993, astro-ph/9311032.

[33]  P. Gregory,et al.  The Parkes-MIT-NRAO (PMN) map catalog of radio sources covering -88 deg less than delta less than -37 deg at 4.85GHz , 1994 .

[34]  R. Ekers,et al.  The Parkes-MIT-NRAO (PMN) surveys. 3: Source catalog for the tropical survey (-29 deg less than delta less than -9 deg .5) , 1994 .

[35]  A. Poglitsch,et al.  158 micron forbidden C II mapping of NGC 6946 - Probing the atomic medium , 1993 .

[36]  J. Hulst The Interstellar Medium in Nearby Galaxies , 1992 .

[37]  Charles L. Bennett,et al.  Preliminary spectral observations of the Galaxy with a 7 deg beam by the Cosmic Background Explorer (COBE) , 1991 .

[38]  A. Tielens,et al.  Low-Density Photodissociation Regions , 1991 .

[39]  A. Poglitsch,et al.  The 158 micron forbidden C II line - A measure of global star formation activity in galaxies , 1991 .

[40]  T. Nakagawa,et al.  Large-scale forbidden C II 158 micron emission from the Galaxy , 1991 .

[41]  P. Gregory,et al.  The 87GB catalog of radio sources covering delta between O and + 75 deg at 4. 85 GHz , 1991 .

[42]  A. L. Edwards,et al.  A New Catalog of 53,522 4.85 GHz Sources , 1991 .

[43]  George Helou,et al.  A 1. 49 GHz atlas of the IRAS Bright Galaxy Sample , 1990 .

[44]  A. Tielens,et al.  Physical Conditions in Photodissociation Regions - Application to Galactic Nuclei , 1990 .

[45]  A. Eckart CO isotopic emission and the far-infrared continuum of Centaurus A. , 1989 .

[46]  G. Helou,et al.  IRAS observations of galaxies in the Virgo cluster area , 1988 .

[47]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[48]  Charles H. Townes,et al.  Far-infrared spectroscopy of galaxies - The 158 micron C(+) line and the energy balance of molecular clouds , 1985 .

[49]  Dan M. Watson,et al.  Far-infrared spectroscopy of neutral interstellar clouds , 1984 .

[50]  Lyman Spitzer,et al.  Physical processes in the interstellar medium , 1998 .

[51]  W. D. Watson Heating of Interstellar H i Clouds by Ultraviolet Photoelectron Emission from Grains , 1972 .