Comparison of fully internally and strongly contracted multireference configuration interaction procedures.

Multireference (MR) methods occupy an important class of approaches in quantum chemistry. In many instances, for example, in studying complex magnetic properties of transition metal complexes, they are actually the only physically satisfactory choice. In traditional MR approaches, single and double excitations are performed with respect to all reference configurations (or configuration state functions, CSFs), which leads to an explosive increase of computational cost for larger reference spaces. This can be avoided by the internal contraction scheme proposed by Meyer and Siegbahn, which effectively reduces the number of wavefunction parameters to their single-reference counterpart. The "fully internally contracted" scheme (FIC) is well known from the popular CASPT2 approach. An even shorter expansion of the wavefunction is possible with the "strong contraction" (SC) scheme proposed by Angeli and Malrieu in their NEVPT2 approach. Promising multireference configuration interaction formulations (MRCI) employing internal contraction and strong contraction have been reported by several authors. In this work, we report on the implementation of the FIC-MRCI and SC-MRCI methodologies, using a computer assisted implementation strategy. The methods are benchmarked against the traditional uncontracted MRCI approach for ground and excited states of small molecules (N2, O2, CO, CO(+), OH, CH, and CN). For ground states, the comparison includes the "partially internally contracted" MRCI based on the Celani-Werner ansatz (PC-MRCI). For the three contraction schemes, the average errors range from 2% to 6% of the uncontracted MRCI correlation energies. Excitation energies are reproduced with ∼0.2 eV accuracy. In most cases, the agreement is better than 0.2 eV, even in cases with very large differential correlation contributions as exemplified for the d-d and ligand-to-metal charge transfer transitions of a Cu[NH3]4 (2+) model complex. The benchmark is supplemented with the investigation of typical potential energy surfaces (i.e., N2, HF, LiF, BeH2, ethane C-C bond stretching, and the ethylene double bond torsion). Our results indicate that the SC-scheme, which is successful in the context of second- and third-order perturbation theory, does not offer computational advantages and at the same time leads to much larger errors than the PC and FIC schemes. We discuss the advantages and disadvantages of the PC and FIC schemes, which are of comparable accuracy and, for the systems tested, also of comparable efficiency.

[1]  Hess,et al.  Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. , 1985, Physical review. A, General physics.

[2]  R. Cimiraglia,et al.  An application of second and third-order n-electron valence state perturbation theory to the calculation of the vertical electronic spectrum of furan , 2006 .

[3]  Kenneth G. Dyall,et al.  The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function , 1995 .

[4]  Takeshi Yanai,et al.  Fully Internally Contracted Multireference Configuration Interaction Theory Using Density Matrix Renormalization Group: A Reduced-Scaling Implementation Derived by Computer-Aided Tensor Factorization. , 2015, Journal of chemical theory and computation.

[5]  Sanghamitra Das,et al.  Full implementation and benchmark studies of Mukherjee's state-specific multireference coupled-cluster ansatz. , 2010, The Journal of chemical physics.

[6]  B. Roos,et al.  A Comparison of the Super-CI and the Newton-Raphson Scheme in the Complete Active Space SCF Method , 1980 .

[7]  Qiming Sun,et al.  Stochastic Multiconfigurational Self-Consistent Field Theory. , 2015, Journal of chemical theory and computation.

[8]  Daniel Maynau,et al.  Direct selected multireference configuration interaction calculations for large systems using localized orbitals. , 2011, The Journal of chemical physics.

[9]  Celestino Angeli,et al.  FRODO: a MuPAD program to calculate matrix elements between contracted wavefunctions , 2005, Comput. Phys. Commun..

[10]  H. Lischka,et al.  Comparison of multireference configuration interaction potential energy surfaces for H + O2 → HO2: the effect of internal contraction , 2014, Theoretical Chemistry Accounts.

[11]  Rodney J. Bartlett,et al.  Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI , 1993 .

[12]  J. H. van Lenthe,et al.  The direct CI method , 2006 .

[13]  David Robinson,et al.  Splitting multiple bonds: A comparison of methodologies on the accuracy of bond dissociation energies , 2013, J. Comput. Chem..

[14]  Janssen,et al.  Band gap in NiO: A cluster study. , 1988, Physical review. B, Condensed matter.

[15]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[16]  Hans-Joachim Werner,et al.  Calculation of transition moments between internally contracted MRCI wave functions with non-orthogonal orbitals , 2007 .

[17]  Wataru Mizukami,et al.  Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: A review of theory and applications , 2015 .

[18]  H. Werner,et al.  Molecular properties from MCSCF‐SCEP wave functions. I. Accurate dipole moment functions of OH, OH−, and OH+ , 1983 .

[19]  Markus Reiher,et al.  Construction of CASCI-type wave functions for very large active spaces. , 2011, The Journal of chemical physics.

[20]  G. W. Lemire,et al.  Potential energy surfaces for the interaction of CH(X 2Π,B 2Σ−) with Ar and an assignment of the stretch‐bend levels of the ArCH(B) van der Waals molecule , 1994 .

[21]  P. Knowles,et al.  The CIPT2 method: Coupling of multi-reference configuration interaction and multi-reference perturbation theory. Application to the chromium dimer , 2004 .

[22]  Toru Shiozaki,et al.  Communication: automatic code generation enables nuclear gradient computations for fully internally contracted multireference theory. , 2015, The Journal of chemical physics.

[23]  A general nonlinear expansion form for electronic wave functions. , 2005, The journal of physical chemistry. A.

[24]  Nathalie Guihéry,et al.  Magnetic interactions in molecules and highly correlated materials: physical content, analytical derivation, and rigorous extraction of magnetic Hamiltonians. , 2014, Chemical reviews.

[25]  C. Bauschlicher,et al.  Benchmark full configuration-interaction calculations on HF and NH2 , 1986 .

[26]  Daniel Maynau,et al.  Metal-ligand delocalization in magnetic orbitals of binuclear complexes , 2002 .

[27]  Toru Shiozaki,et al.  Explicitly correlated multireference configuration interaction with multiple reference functions: avoided crossings and conical intersections. , 2011, The Journal of chemical physics.

[28]  S. Langhoff,et al.  On the 1A1–3B1 separation in CH2 and SiH2 , 1987 .

[29]  Hans-Joachim Werner,et al.  Third-order multireference perturbation theory The CASPT3 method , 1996 .

[30]  W. Goddard,et al.  Correlation‐consistent configuration interaction: Accurate bond dissociation energies from simple wave functions , 1988 .

[31]  Celestino Angeli,et al.  Computer assisted generation of the matrix elements between contracted wavefunctions in a Complete Active Space scheme , 2005, Comput. Phys. Commun..

[32]  F. Neese,et al.  SORCI for photochemical and thermal reaction paths: A benchmark study , 2014 .

[33]  R. Cimiraglia,et al.  n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants , 2002 .

[34]  R. Cimiraglia,et al.  Calibration of the n-electron valence state perturbation theory approach. , 2004, The Journal of chemical physics.

[35]  P. Knowles,et al.  An efficient method for the evaluation of coupling coefficients in configuration interaction calculations , 1988 .

[36]  Rodney J. Bartlett,et al.  Approximately extensive modifications of the multireference configuration interaction method: A theoretical and practical analysis , 1995 .

[37]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[38]  S. Langhoff,et al.  Theoretical study of the dipole moment function of OH(X 2Π) , 1987 .

[39]  Garnet Kin-Lic Chan,et al.  Spin-adapted density matrix renormalization group algorithms for quantum chemistry. , 2012, The Journal of chemical physics.

[40]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[41]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[42]  Ron Shepard,et al.  C2V Insertion pathway for BeH2: A test problem for the coupled‐cluster single and double excitation model , 1983 .

[43]  Yubin Wang,et al.  New schemes for internally contracted multi-reference configuration interaction. , 2014, The Journal of chemical physics.

[44]  Hans Lischka,et al.  Implementation of an electronic structure program system on the CYBER 205 , 1985 .

[45]  E. Giner,et al.  Metal-ligand delocalization and spin density in the CuCl2 and [CuCl4](2-) molecules: Some insights from wave function theory. , 2015, The Journal of chemical physics.

[46]  Hans-Joachim Werner,et al.  A comparison of variational and non-variational internally contracted multiconfiguration-reference configuration interaction calculations , 1990 .

[47]  Roland Lindh,et al.  Linear scaling multireference singles and doubles configuration interaction. , 2008, The Journal of chemical physics.

[48]  K. Pierloot,et al.  Multiconfigurational g tensor calculations as a probe for the covalency of the copper-ligand bonds in copper(II) complexes: [CuCl4]2-, [Cu(NH3)4]2+, and plastocyanin. , 2008, The journal of physical chemistry. A.

[49]  Mihály Kállay,et al.  The barrier height of the F+H2 reaction revisited: coupled-cluster and multireference configuration-interaction benchmark calculations. , 2008, The Journal of chemical physics.

[50]  A. D. McLean,et al.  Classification of configurations and the determination of interacting and noninteracting spaces in configuration interaction , 1973 .

[51]  Wenjian Liu,et al.  iCI: Iterative CI toward full CI. , 2016, Journal of chemical theory and computation.

[52]  S. Grimme,et al.  A COMBINATION OF KOHN-SHAM DENSITY FUNCTIONAL THEORY AND MULTI-REFERENCE CONFIGURATION INTERACTION METHODS , 1999 .

[53]  J. Malrieu,et al.  Accurate ab initio determination of magnetic interactions and hopping integrals in La2−xSrxCuO4 systems , 2000 .

[54]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[55]  Frank Neese,et al.  Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree–Fock and Kohn–Sham theory , 2001 .

[56]  Celestino Angeli,et al.  A comparison of various approaches in internally contracted multireference configuration interaction: the carbon dimer as a test case , 2012 .

[57]  Robert J. Harrison,et al.  A massively parallel multireference configuration interaction program: The parallel COLUMBUS program , 1997 .

[58]  R. Cimiraglia,et al.  New perspectives in multireference perturbation theory: the n-electron valence state approach , 2007 .

[59]  J. S. Francisco,et al.  A CASSCF–MRCI study on the low-lying excited states of CH3OCl , 1999 .

[60]  F. Neese,et al.  Metal-to-metal charge-transfer transitions: reliable excitation energies from ab initio calculations , 2012, Theoretical Chemistry Accounts.

[61]  Ernest R. Davidson,et al.  Considerations in constructing a multireference second‐order perturbation theory , 1994 .

[62]  Garnet Kin-Lic Chan,et al.  Strongly contracted canonical transformation theory. , 2010, The Journal of chemical physics.

[63]  H. Bolvin An alternative approach to the g-matrix: theory and applications. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[64]  J. Bowman,et al.  A THEORETICAL STUDY OF THE VIBRATIONAL ENERGY SPECTRUM OF THE HOCL/HCLO SYSTEM ON AN ACCURATE AB INITIO POTENTIAL ENERGY SURFACE , 1999 .

[65]  Takeshi Yanai,et al.  Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer. , 2011, The Journal of chemical physics.

[66]  Mihály Kállay,et al.  A general state-selective multireference coupled-cluster algorithm , 2002 .

[67]  Hans-Joachim Werner,et al.  Internally contracted multiconfiguration-reference configuration interaction calculations for excited states , 1992 .

[68]  M. Hochlaf,et al.  Accurate ab initio spin–orbit predissociation lifetimes of the A states of SH and SH+ , 2008 .

[69]  Peter Pulay,et al.  A perspective on the CASPT2 method , 2011 .

[70]  F. Neese,et al.  Assessment of n-Electron Valence State Perturbation Theory for Vertical Excitation Energies. , 2013, Journal of chemical theory and computation.

[71]  Francesco A Evangelista,et al.  An orbital-invariant internally contracted multireference coupled cluster approach. , 2011, The Journal of chemical physics.

[72]  C. Bauschlicher,et al.  Full CI benchmark calculations for several states of the same symmetry , 1987 .

[73]  N. Guihéry,et al.  Rigorous Extraction of the Anisotropic Multispin Hamiltonian in Bimetallic Complexes from the Exact Electronic Hamiltonian. , 2010, Journal of chemical theory and computation.

[74]  Per E. M. Siegbahn,et al.  Direct configuration interaction with a reference state composed of many reference configurations , 1980 .

[75]  Ernest R. Davidson,et al.  Configuration interaction calculations on the nitrogen molecule , 1974 .

[76]  J. R. Flores,et al.  A high-accuracy theoretical study of the AlOH2 system , 2009 .

[77]  Hans-Joachim Werner,et al.  A new internally contracted multi-reference configuration interaction method. , 2011, The Journal of chemical physics.

[78]  Garnet Kin-Lic Chan,et al.  Canonical transformation theory for multireference problems. , 2006, The Journal of chemical physics.

[79]  Frank Neese,et al.  Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods? , 2011, Journal of chemical theory and computation.

[80]  Toru Shiozaki,et al.  Explicitly correlated multireference configuration interaction: MRCI-F12. , 2011, The Journal of chemical physics.

[81]  P. Knowles,et al.  Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions , 2000 .

[82]  Stefano Evangelisti,et al.  Direct generation of local orbitals for multireference treatment and subsequent uses for the calculation of the correlation energy , 2002 .

[83]  Toru Shiozaki,et al.  Multireference explicitly correlated F12 theories , 2013 .

[84]  Roland Lindh,et al.  Multiconfiguration second‐order perturbation theory approach to strong electron correlation in chemistry and photochemistry , 2012 .

[85]  Andreas Köhn,et al.  Perturbative treatment of triple excitations in internally contracted multireference coupled cluster theory. , 2012, The Journal of chemical physics.

[86]  P. Knowles,et al.  Accurate multireference configuration interaction calculations of the potential energy function and the dissociation energy of N2 , 1991 .

[87]  J. Malrieu,et al.  The use of effective Hamiltonians for the treatment of avoided crossings. II. Nearly diabatic potential curves , 1984 .

[88]  Jean-Paul Malrieu,et al.  Specific CI calculation of energy differences: Transition energies and bond energies , 1993 .

[89]  S. Langhoff,et al.  An initio calculations on C2, Si2, and SiC , 1987 .

[90]  H. Lischka,et al.  Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. , 2012, Chemical reviews.

[91]  Toru Shiozaki,et al.  Analytical energy gradients for second-order multireference perturbation theory using density fitting. , 2013, The Journal of chemical physics.

[92]  Hans-Joachim Werner,et al.  The self‐consistent electron pairs method for multiconfiguration reference state functions , 1982 .

[93]  K. Pierloot,et al.  IX – Calculations of Electronic Spectra of Transition Metal Complexes , 2005 .

[94]  Celestino Angeli,et al.  Analysis of the magnetic coupling in binuclear systems. III. The role of the ligand to metal charge transfer excitations revisited. , 2009, The Journal of chemical physics.

[95]  S. Peyerimhoff,et al.  Ab initio Cl calculation of the effects of Rydberg-valence mixing in the electronic spectrum of the HF molecule , 1982 .

[96]  Toru Shiozaki,et al.  Communication: extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. , 2011, The Journal of chemical physics.

[97]  Marcel Nooijen,et al.  Cumulant approach to the direct calculation of reduced density matrices: A critical analysis , 2003 .

[98]  Michael Hanrath,et al.  New algorithms for an individually selecting MR-CI program , 1997 .

[99]  Qiming Sun,et al.  N-Electron Valence State Perturbation Theory Based on a Density Matrix Renormalization Group Reference Function, with Applications to the Chromium Dimer and a Trimer Model of Poly(p-Phenylenevinylene). , 2015, Journal of chemical theory and computation.

[100]  H. Werner Molecular properties from MCSCF‐SCEP wave functions. II. Calculation of electronic transition moments , 1984 .

[101]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[102]  G. Bacskay Spectroscopy and heats of formation of CXI (X = Br, Cl, F) iodocarbenes: quantum chemical characterisation of the X̃(1 A′), ã(3 A″) and Ã(1 A″) states , 2015 .

[103]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[104]  Emily A. Carter,et al.  Local correlation in the virtual space in multireference singles and doubles configuration interaction , 2003 .

[105]  Debashis Mukherjee,et al.  Cumulant expansion of the reduced density matrices , 1999 .

[106]  David E. Bernholdt,et al.  Automatic code generation for many-body electronic structure methods: the tensor contraction engine , 2006 .

[107]  Hans-Joachim Werner,et al.  Analytical energy gradients for internally contracted second-order multireference perturbation theory , 2003 .

[108]  Ernest R. Davidson,et al.  Studies in Configuration Interaction: The First-Row Diatomic Hydrides , 1969 .

[109]  C. Bender NATURAL ORBITAL BASED ENERGY CALCULATION FOR HELIUM HYDRIDE AND LITHIUM HYDRIDE , 1966 .

[110]  J. Malrieu,et al.  An iterative difference-dedicated configuration interaction. Proposal and test studies , 1995 .

[111]  Celestino Angeli,et al.  Third-order multireference perturbation theory: the n-electron valence state perturbation-theory approach. , 2006, The Journal of chemical physics.

[112]  Frank Neese,et al.  SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory. , 2016, The Journal of chemical physics.

[113]  Andreas Köhn,et al.  Internally contracted multireference coupled-cluster theory in a multistate framework. , 2016, The Journal of chemical physics.

[114]  Anna I. Krylov,et al.  Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster doubles model , 1998 .

[115]  R. Bartlett,et al.  The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .

[116]  Celestino Angeli,et al.  N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant , 2001 .

[117]  Robert J. Buenker,et al.  Individualized configuration selection in CI calculations with subsequent energy extrapolation , 1974 .

[118]  R. Ahlrichs,et al.  Direct determination of pair natural orbitals , 1975 .

[119]  Per E. M. Siegbahn,et al.  On the internally contracted multireference CI method with full contraction , 1992 .

[120]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[121]  Michael Hanrath,et al.  Dissociating N2: a multi-reference coupled cluster study on the potential energy surfaces of ground and excited states , 2009 .

[122]  Mariano Spivak,et al.  Improving the calculation of magnetic coupling constants in MRPT methods , 2014, J. Comput. Chem..

[123]  R. Cimiraglia,et al.  A convenient decontraction procedure of internally contracted state-specific multireference algorithms. , 2006, The Journal of chemical physics.

[124]  Andreas Köhn,et al.  Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly. , 2011, The Journal of chemical physics.

[125]  K. Hamacher,et al.  Massively parallel individually selecting configuration interaction , 2000 .

[126]  P. Malmqvist,et al.  Calculation of EPR g tensors for transition-metal complexes based on multiconfigurational perturbation theory (CASPT2). , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[127]  Stephen R. Langhoff,et al.  Full configuration‐interaction study of the ionic–neutral curve crossing in LiF , 1988 .

[128]  W. Green,et al.  Which Ab Initio Wave Function Methods Are Adequate for Quantitative Calculations of the Energies of Biradicals? The Performance of Coupled-Cluster and Multi-Reference Methods Along a Single-Bond Dissociation Coordinate. , 2013, Journal of chemical theory and computation.

[129]  A. C. Borin,et al.  The lowest singlet and triplet electronic states of NiC revised , 2004 .

[130]  Frank Neese,et al.  The ORCA program system , 2012 .

[131]  J. Malrieu,et al.  Analysis of the magnetic coupling in binuclear complexes. I. Physics of the coupling , 2002 .

[132]  P. Knowles,et al.  A theoretical rotationally resolved infrared spectrum for H2O+ (X 2B1) , 1989 .

[133]  C. Marian,et al.  SPOCK.CI: a multireference spin-orbit configuration interaction method for large molecules. , 2006, The Journal of chemical physics.

[134]  José-Vicente Pitarch Ruiz,et al.  The use of local orbitals in multireference calculations , 2003 .

[135]  W. Mizukami,et al.  Relativistic internally contracted multireference electron correlation methods. , 2015, Journal of chemical theory and computation.

[136]  H. Köppel,et al.  Ab initio quantum study of UV absorption spectra of cis- and trans-hexatriene , 2015 .

[137]  B. Roos,et al.  A direct CI method with a multiconfigurational reference state , 1980 .

[138]  B. Roos,et al.  The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule , 1981 .

[139]  Peter Pulay,et al.  An efficient reformulation of the closed‐shell self‐consistent electron pair theory , 1984 .

[140]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[141]  Heisenberg exchange enhancement by orbital relaxation in cuprate compounds , 1996, cond-mat/9706272.

[142]  Takeshi Yanai,et al.  Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. , 2013, The Journal of chemical physics.

[143]  F. Neese Sum‐over‐states based multireference ab initio calculation of EPR spin Hamiltonian parameters for transition metal complexes. A case study , 2004, Magnetic resonance in chemistry : MRC.

[144]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[145]  Hans-Joachim Werner,et al.  Matrix-formulated direct multiconfiguration self-consistent field and multiconfiguration reference configuration-interaction methods , 2007 .

[146]  M. Hanauer,et al.  Explicitly correlated internally contracted multireference coupled-cluster singles and doubles theory: ic-MRCCSD(F12∗) , 2013 .

[147]  Hans-Joachim Werner,et al.  Multireference perturbation theory for large restricted and selected active space reference wave functions , 2000 .

[148]  Stephen R. Langhoff,et al.  Full CI benchmark calculations on N2, NO, and O2: A comparison of methods for describing multiple bonds , 1987 .

[149]  Reinhold F. Fink,et al.  A multi-configuration reference CEPA method based on pair natural orbitals , 1993 .

[150]  Frank Neese,et al.  Advanced aspects of ab initio theoretical optical spectroscopy of transition metal complexes: Multiplets, spin-orbit coupling and resonance Raman intensities , 2007 .

[151]  Coen de Graaf,et al.  Multiconfigurational Perturbation Theory: An Efficient Tool to Predict Magnetic Coupling Parameters in Biradicals, Molecular Complexes, and Ionic Insulators , 2001 .

[152]  Celestino Angeli,et al.  A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach. , 2004, The Journal of chemical physics.

[153]  P. Taylor,et al.  A full CI treatment of the 1A1-3B1 separation in methylene , 1986 .

[154]  Luis Serrano-Andrés,et al.  The multi-state CASPT2 method , 1998 .

[155]  G. Segal,et al.  Theoretical calculation of the potential curves of the states of HF below 14 eV , 1981 .

[156]  B. Roos,et al.  Applications of level shift corrected perturbation theory in electronic spectroscopy , 1996 .

[157]  Jean-Paul Malrieu,et al.  Analysis of the magnetic coupling in binuclear complexes. II. Derivation of valence effective Hamiltonians from ab initio CI and DFT calculations , 2002 .

[158]  P. Fulde,et al.  On the coupled‐electron‐pair approximation based on a multireference state , 1992 .

[159]  Bernd A. Hess,et al.  Revision of the Douglas-Kroll transformation. , 1989, Physical review. A, General physics.

[160]  Markus Reiher,et al.  The generalized Douglas–Kroll transformation , 2002 .

[161]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[162]  C. Bauschlicher,et al.  Full CI benchmark calculations on CH3 , 1987 .

[163]  Frank Neese,et al.  A spectroscopy oriented configuration interaction procedure , 2003 .

[164]  Markus P. Fülscher,et al.  Multiconfigurational perturbation theory: Applications in electronic spectroscopy , 1996 .

[165]  M. Hochlaf,et al.  Accurate global potential energy surface for the H + OH+ collision. , 2014, The Journal of chemical physics.

[166]  C. Bauschlicher,et al.  Full CI benchmark calculations for molecular properties , 1987 .

[167]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[168]  S. Grimme,et al.  Multi-reference Møller–Plesset theory: computational strategies for large molecules , 2000 .

[169]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.