Foundations of the Colored Jones Polynomial of singular knots

This article gives the foundations of the colored Jones polynomial for singular knots. We extend Masbum and Vogel's algorithm to compute the colored Jones polynomial for any singular knot. We also introduce the tail of the colored Jones polynomial of singular knots and use its stability properties to prove a false theta function identity that goes back to Ramanujan.

[1]  Elliott H Lieb,et al.  Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Vaughan F. R. Jones Index for subfactors , 1983 .

[3]  George E. Andrews,et al.  The lost notebook and other unpublished papers , 1988 .

[4]  L. Kauffman Invariants of graphs in three-space , 1989 .

[5]  V. Turaev,et al.  Ribbon graphs and their invaraints derived from quantum groups , 1990 .

[6]  Victor A. Vassiliev,et al.  Cohomology of knot spaces , 1990 .

[7]  Vladimir Turaev,et al.  Invariants of 3-manifolds via link polynomials and quantum groups , 1991 .

[8]  L. Kauffman,et al.  LINK POLYNOMIALS AND A GRAPHICAL CALCULUS , 1992 .

[9]  W. Lickorish Calculations with the temperley—Lieb algebra , 1992 .

[10]  Vladimir Turaev,et al.  State sum invariants of 3 manifolds and quantum 6j symbols , 1992 .

[11]  H. Morton Invariants of Links and 3-Manifolds From Skein Theory and From Quantum Groups , 1993 .

[12]  V. Turaev,et al.  QUANTUM INVARIANTS OF 3-MANIFOLDS ASSOCIATED WITH CLASSICAL SIMPLE LIE ALGEBRAS , 1993 .

[13]  W. B. Raymond Lickorish,et al.  Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds , 1994 .

[14]  J. Barrett,et al.  Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds , 1994 .

[15]  G. Masbaum,et al.  3-valent graphs and the Kauffman bracket , 1994 .

[16]  N. Habegger,et al.  Topological Auantum Field Theories derived from the Kauffman bracket , 1995 .

[17]  L. Raifeartaigh W-Algebras , 1997 .

[18]  Bernd Gemein Singular Braids and Markov's Theorem , 1997 .

[19]  J. Przytycki Fundamentals of Kauffman bracket skein modules , 1998, math/9809113.

[20]  Kazuhiro Hikami,et al.  Volume Conjecture and Asymptotic Expansion of q-Series , 2003, Exp. Math..

[21]  Skein-theoretical derivation of some formulas of Habiro , 2003, math/0306345.

[22]  The proof of Birman's conjecture on singular braid monoids , 2003, math/0306422.

[23]  George E. Andrews,et al.  Ramanujan's Lost Notebook: Part I , 2005 .

[24]  Oliver T. Dasbach,et al.  On the head and the tail of the colored Jones polynomial , 2006, Compositio Mathematica.

[25]  T. Fiedler The Jones and Alexander polynomials for singular links , 2007, 0706.0084.

[26]  S. Lambropoulou,et al.  AN INVARIANT FOR SINGULAR KNOTS , 2009, 0905.3665.

[27]  Antonio C. de A. Campello,et al.  On sequences of projections of the cubic lattice , 2011, ArXiv.

[28]  Oliver T. Dasbach,et al.  Rogers-Ramanujan type identities and the head and tail of the colored Jones polynomial , 2011, 1106.3948.

[29]  Thang T. Q. Lê,et al.  Nahm sums, stability and the colored Jones polynomial , 2011, 1112.3905.

[30]  L. Rozansky Khovanov homology of a unicolored b-adequate link has a tail , 2012, 1203.5741.

[31]  Ramanujan's lost notebook , 2012 .

[32]  Mustafa Hajij The Bubble Skein Element and Applications , 2012, 1212.2224.

[33]  M. Hajij,et al.  The tail of a quantum spin network , 2013, 1308.2369.

[34]  Cody Armond The head and tail conjecture for alternating knots , 2011, 1112.3995.

[35]  M. Hajij,et al.  The colored Kauffman skein relation and the head and tail of the colored Jones polynomial , 2014, 1401.4537.

[36]  R. Osburn,et al.  Rogers–Ramanujan type identities for alternating knots , 2014, 1407.3482.

[37]  M. Hajij,et al.  Pretzel Knots and q-Series , 2015, 1512.00129.

[38]  K. Bringmann,et al.  W-algebras , false theta functions and quantum modular forms , 2015 .

[39]  K. Bringmann,et al.  -Algebras, False Theta Functions and Quantum Modular Forms, I , 2015 .

[40]  R. Osburn,et al.  q-series and tails of colored Jones polynomials , 2016, 1601.05577.

[41]  C. Lee A trivial tail homology for non $A$-adequate links , 2016, 1611.00686.

[42]  M. Elhamdadi,et al.  Singular Knots and Involutive Quandles , 2016, 1608.08163.

[43]  The Colored Jones Polynomial of Singular Knots , 2016, 1602.08628.

[44]  M. Hajij,et al.  TWIST REGIONS AND COEFFICIENTS STABILITY OF THE COLORED JONES POLYNOMIAL. , 2016, Transactions of the American mathematical society.

[45]  M. Elhamdadi,et al.  Generating sets of Reidemeister moves of oriented singular links and quandles , 2017, Journal of Knot Theory and Its Ramifications.