Derivation of the postulates of quantum mechanics from the first principles of scale relativity

Quantum mechanics is based on a series of postulates which lead to a very good description of the microphysical realm but which have, up to now, not been derived from first principles. In the present work, we suggest such a derivation in the framework of the theory of scale relativity. After having analyzed the actual status of the various postulates, rules and principles that underlie the present axiomatic foundation of quantum mechanics (in terms of main postulates, secondary rules and derived 'principles'), we attempt to provide the reader with an exhaustive view of the matter, by both gathering here results which are already available in the literature, and deriving new ones which complete the postulate list.

[1]  M. Born Physical Aspects of Quantum Mechanics , 1927, Nature.

[2]  Wang,et al.  Comment on "Repeated measurements in stochastic mechanics" , 1993, Physical review. D, Particles and fields.

[3]  J. Pissondes Quadratic relativistic invariant and metric form in quantum mechanics , 1999 .

[4]  Laurent Nottale,et al.  The scale-relativity program , 1999 .

[5]  Laurent Nottale,et al.  Scale-relativity and quantization of the universe I. Theoretical framework , 1997 .

[6]  R. Fürth Über einige Beziehungen zwischen klassischer Statistik und Quantenmechanik , 1933 .

[7]  Laurent Nottale,et al.  Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .

[8]  Divergence d'échelle et différentiabilité , 2000 .

[9]  Imre Fényes,et al.  Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik , 1952 .

[10]  C. Castro Nonlinear corrections to the Schrödinger equation from geometric quantum mechanics , 1990 .

[11]  The Pauli equation in scale relativity , 2006, quant-ph/0609107.

[12]  Quantum–classical transition in scale relativity , 2004, quant-ph/0609161.

[13]  Statistical interpretation of the Klein–Gordon equation in terms of the space‐time Weyl curvature , 1984 .

[14]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[15]  L. F. Abbott,et al.  Dimension of a Quantum-Mechanical Path. , 1981 .

[16]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[17]  Jacky Cresson Non-differentiable variational principles , 2005 .

[18]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[19]  J. Polkinghorne The science and life of albert einstein , 1983 .

[20]  C. Castro Nonlinear quantum mechanics as weyl geometry of a classical statistical ensemble , 1991 .

[21]  W. Weizel Ableitung der Quantentheorie aus einem klassischen, kausal determinierten Modell , 1953 .

[22]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[23]  Peter Hänggi,et al.  Is quantum mechanics equivalent to a classical stochastic process , 1979 .

[24]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[25]  Laurent Nottale,et al.  Scale relativity and fractal space-time: applications to quantum physics, cosmology and chaotic systems. , 1996 .

[26]  R. Hermann,et al.  Numerical simulation of a quantum particle in a box , 1997 .

[27]  S. Adler,et al.  Quaternionic quantum mechanics and quantum fields , 1995 .

[28]  Heisenberg uncertainty relations and average space curvature in geometric quantum mechanics , 1988 .

[29]  C. Castro On Weyl geometry, random processes, and geometric quantum mechanics , 1992 .

[30]  E. Santamato Geometric derivation of the Schrödinger equation from classical mechanics in curved Weyl spaces , 1984 .

[31]  S. Adler Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory , 2004 .

[32]  P. Davies Quantum Mechanics, Second edition , 1994 .

[33]  Santamato Gauge-invariant statistical mechanics and average action principle for the Klein-Gordon particle in geometric quantum mechanics. , 1985, Physical Review D, Particles and fields.

[34]  W. Weizel Ableitung der Quantentheorie aus einem klassischen Modell. II , 1953 .

[35]  Roger Balian On the principles of quantum mechanics and the reduction of the wave packet , 1989 .

[36]  L. Nottale The Theory of Scale Relativity: Non‐Differentiable Geometry and Fractal Space‐Time , 2004 .

[37]  Incompleteness of trajectory-based interpretations of quantum mechanics , 2004, quant-ph/0406054.

[38]  Edward Nelson Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .

[39]  W. Weizel Ableitung der quantenmechanischen Wellengleichung des Mehrteilchensystems aus einem klassischen Modell , 1953 .

[40]  M. Born Zur Quantenmechanik der Stoßvorgänge , 1926 .

[41]  R. Feynman,et al.  The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .

[42]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[43]  C. Ross Found , 1869, The Dental register.

[44]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[45]  R. Desmorat C. R. Acad. Sci. Paris, t. 328, Série II b, p. 445-450, 2000 Mécanique des solides et structures/Mechanics of solids and structures (Comportement des matériaux, rhéologie/Behaviour of materials, rheology) Dissymétrie de comportement élastique anisotrope couplé ou non à l'endommagement , 2000 .

[46]  L. Nottale,et al.  Non-Abelian gauge field theory in scale relativity , 2006, hep-th/0605280.

[47]  B. Englert,et al.  Quantum optical tests of complementarity , 1991, Nature.

[48]  Abraham Pais,et al.  ‘Subtle Is the Lord …’: The Science and the Life of Albert Einstein by Abraham Pais (review) , 1984 .

[49]  C. Castro On modified Weyl–Heisenberg algebras, noncommutativity, matrix-valued Planck constant and QM in Clifford spaces , 2006 .

[50]  C. Joachain,et al.  Quantum Mechanics , 2000 .

[51]  L. Nottale Scale Relativity and Schrödinger's Equation , 1998 .

[52]  Jacky Cresson Scale calculus and the Schrödinger equation , 2003 .

[53]  G Ord,et al.  Fractal space-time: a geometric analogue of relativistic quantum mechanics , 1983 .

[54]  M. M. Postnikov Leçons de géométrie ; Groupes et algèbres de Lie , 1985 .

[55]  M. Berry Quantum fractals in boxes , 1996 .

[56]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .