Derivation of the postulates of quantum mechanics from the first principles of scale relativity
暂无分享,去创建一个
[1] M. Born. Physical Aspects of Quantum Mechanics , 1927, Nature.
[2] Wang,et al. Comment on "Repeated measurements in stochastic mechanics" , 1993, Physical review. D, Particles and fields.
[3] J. Pissondes. Quadratic relativistic invariant and metric form in quantum mechanics , 1999 .
[4] Laurent Nottale,et al. The scale-relativity program , 1999 .
[5] Laurent Nottale,et al. Scale-relativity and quantization of the universe I. Theoretical framework , 1997 .
[6] R. Fürth. Über einige Beziehungen zwischen klassischer Statistik und Quantenmechanik , 1933 .
[7] Laurent Nottale,et al. Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .
[8] Divergence d'échelle et différentiabilité , 2000 .
[9] Imre Fényes,et al. Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik , 1952 .
[10] C. Castro. Nonlinear corrections to the Schrödinger equation from geometric quantum mechanics , 1990 .
[11] The Pauli equation in scale relativity , 2006, quant-ph/0609107.
[12] Quantum–classical transition in scale relativity , 2004, quant-ph/0609161.
[13] Statistical interpretation of the Klein–Gordon equation in terms of the space‐time Weyl curvature , 1984 .
[14] D. A. Edwards. The mathematical foundations of quantum mechanics , 1979, Synthese.
[15] L. F. Abbott,et al. Dimension of a Quantum-Mechanical Path. , 1981 .
[16] R. Leighton,et al. Feynman Lectures on Physics , 1971 .
[17] Jacky Cresson. Non-differentiable variational principles , 2005 .
[18] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[19] J. Polkinghorne. The science and life of albert einstein , 1983 .
[20] C. Castro. Nonlinear quantum mechanics as weyl geometry of a classical statistical ensemble , 1991 .
[21] W. Weizel. Ableitung der Quantentheorie aus einem klassischen, kausal determinierten Modell , 1953 .
[22] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[23] Peter Hänggi,et al. Is quantum mechanics equivalent to a classical stochastic process , 1979 .
[24] D. Bohm. A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .
[25] Laurent Nottale,et al. Scale relativity and fractal space-time: applications to quantum physics, cosmology and chaotic systems. , 1996 .
[26] R. Hermann,et al. Numerical simulation of a quantum particle in a box , 1997 .
[27] S. Adler,et al. Quaternionic quantum mechanics and quantum fields , 1995 .
[28] Heisenberg uncertainty relations and average space curvature in geometric quantum mechanics , 1988 .
[29] C. Castro. On Weyl geometry, random processes, and geometric quantum mechanics , 1992 .
[30] E. Santamato. Geometric derivation of the Schrödinger equation from classical mechanics in curved Weyl spaces , 1984 .
[31] S. Adler. Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory , 2004 .
[32] P. Davies. Quantum Mechanics, Second edition , 1994 .
[33] Santamato. Gauge-invariant statistical mechanics and average action principle for the Klein-Gordon particle in geometric quantum mechanics. , 1985, Physical Review D, Particles and fields.
[34] W. Weizel. Ableitung der Quantentheorie aus einem klassischen Modell. II , 1953 .
[35] Roger Balian. On the principles of quantum mechanics and the reduction of the wave packet , 1989 .
[36] L. Nottale. The Theory of Scale Relativity: Non‐Differentiable Geometry and Fractal Space‐Time , 2004 .
[37] Incompleteness of trajectory-based interpretations of quantum mechanics , 2004, quant-ph/0406054.
[38] Edward Nelson. Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .
[39] W. Weizel. Ableitung der quantenmechanischen Wellengleichung des Mehrteilchensystems aus einem klassischen Modell , 1953 .
[40] M. Born. Zur Quantenmechanik der Stoßvorgänge , 1926 .
[41] R. Feynman,et al. The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .
[42] E. Madelung,et al. Quantentheorie in hydrodynamischer Form , 1927 .
[43] C. Ross. Found , 1869, The Dental register.
[44] R. Feynman,et al. Quantum Mechanics and Path Integrals , 1965 .
[45] R. Desmorat. C. R. Acad. Sci. Paris, t. 328, Série II b, p. 445-450, 2000 Mécanique des solides et structures/Mechanics of solids and structures (Comportement des matériaux, rhéologie/Behaviour of materials, rheology) Dissymétrie de comportement élastique anisotrope couplé ou non à l'endommagement , 2000 .
[46] L. Nottale,et al. Non-Abelian gauge field theory in scale relativity , 2006, hep-th/0605280.
[47] B. Englert,et al. Quantum optical tests of complementarity , 1991, Nature.
[48] Abraham Pais,et al. ‘Subtle Is the Lord …’: The Science and the Life of Albert Einstein by Abraham Pais (review) , 1984 .
[49] C. Castro. On modified Weyl–Heisenberg algebras, noncommutativity, matrix-valued Planck constant and QM in Clifford spaces , 2006 .
[50] C. Joachain,et al. Quantum Mechanics , 2000 .
[51] L. Nottale. Scale Relativity and Schrödinger's Equation , 1998 .
[52] Jacky Cresson. Scale calculus and the Schrödinger equation , 2003 .
[53] G Ord,et al. Fractal space-time: a geometric analogue of relativistic quantum mechanics , 1983 .
[54] M. M. Postnikov. Leçons de géométrie ; Groupes et algèbres de Lie , 1985 .
[55] M. Berry. Quantum fractals in boxes , 1996 .
[56] R. Feynman,et al. Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .