Geodemographic analysis of Borrelia burgdorferi sensu lato using the 5S-23S rDNA spacer region.

[1]  S. Hemmati,et al.  Decoding the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for cell-penetrating peptides involved in pathogenesis or applicable as drug delivery vectors , 2020, Infection, Genetics and Evolution.

[2]  Caspar Zialor DNA sequencing with chain terminating inhibitors , 2014 .

[3]  E. Scholte,et al.  Prevalence of Coxiella Burnetii in Ticks After a Large Outbreak of Q Fever , 2012, Zoonoses and public health.

[4]  E. Scholte,et al.  Parasites of vectors - Ixodiphagus hookeri and its Wolbachia symbionts in ticks in the Netherlands , 2011, Parasites & Vectors.

[5]  D. Fish,et al.  Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. , 2011, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[6]  W. Takken,et al.  Geographic and temporal variations in population dynamics of Ixodes ricinus and associated Borrelia infections in The Netherlands. , 2011, Vector borne and zoonotic diseases.

[7]  A. von Haeseler,et al.  The performance of phylogenetic algorithms in estimating haplotype genealogies with migration , 2011, Molecular ecology.

[8]  W. Takken,et al.  Absence of zoonotic Bartonella species in questing ticks: First detection of Bartonella clarridgeiae and Rickettsia felis in cat fleas in the Netherlands , 2011, Parasites & Vectors.

[9]  A. Swart,et al.  Small risk of developing symptomatic tick-borne diseases following a tick bite in the Netherlands , 2011, Parasites & Vectors.

[10]  H. Sprong,et al.  Role of sand lizards in the ecology of Lyme and other tick-borne diseases in the Netherlands , 2010, Parasites & Vectors.

[11]  L. Excoffier,et al.  Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows , 2010, Molecular ecology resources.

[12]  Kazutaka Katoh,et al.  Parallelization of the MAFFT multiple sequence alignment program , 2010, Bioinform..

[13]  P. Wielinga,et al.  Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species , 2009, Parasites & Vectors.

[14]  M. Drancourt,et al.  A New Borrelia Species Defined by Multilocus Sequence Analysis of Housekeeping Genes , 2009, Applied and Environmental Microbiology.

[15]  W. Takken,et al.  Diversity of Ixodes ricinus tick-associated bacterial communities from different forests. , 2008, FEMS microbiology ecology.

[16]  W. Liu,et al.  Novel Genospecies of Borrelia burgdorferi Sensu Lato from Rodents and Ticks in Southwestern China , 2008, Journal of Clinical Microbiology.

[17]  M. Hurn,et al.  MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi , 2008, Proceedings of the National Academy of Sciences.

[18]  F. Strle,et al.  Epidemiological aspects and molecular characterization of Borrelia burgdorferi s.l. from southern Germany with special respect to the new species Borrelia spielmanii sp. nov. , 2008, International journal of medical microbiology : IJMM.

[19]  L. Gern,et al.  Identification of Host Bloodmeal Source and Borrelia burgdorferi Sensu Lato in Field-Collected Ixodes ricinus Ticks in Chaumont (Switzerland) , 2007, Journal of medical entomology.

[20]  L. Schouls,et al.  Molecular Identification of Bloodmeal Source in Ixodes ricinus Ticks Using 12S rDNA As a Genetic Marker , 2007, Journal of medical entomology.

[21]  M. Okuda,et al.  Detection of Borrelia garinii, Borrelia tanukii and Borrelia sp. closely related to Borrelia valaisiana in Ixodes ticks removed from dogs and cats in Japan. , 2007, Veterinary parasitology.

[22]  H. Hauffe,et al.  Genospecies of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks from the Autonomous Province of Trento, Italy. , 2007, International journal of medical microbiology : IJMM.

[23]  L. Schouls,et al.  Longitudinal Analysis of Tick Densities and Borrelia, Anaplasma, and Ehrlichia Infections of Ixodes ricinus Ticks in Different Habitat Areas in The Netherlands , 2006, Applied and Environmental Microbiology.

[24]  D. Fish,et al.  Fundamental processes in the evolutionary ecology of Lyme borreliosis , 2006, Nature Reviews Microbiology.

[25]  P. Wielinga,et al.  Lyme borreliosis in the Netherlands: strong increase in GP consultations and hospital admissions in past 10 years. , 2006, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[26]  M. Bhide,et al.  Sensitivity of Borrelia genospecies to serum complement from different animals and human: a host-pathogen relationship. , 2005, FEMS immunology and medical microbiology.

[27]  Z. Yang,et al.  Probability models for DNA sequence evolution , 2004, Heredity.

[28]  Francesco Saverio Tedesco,et al.  Serum-Resistant Strains of Borrelia burgdorferi Evade Complement-Mediated Killing by Expressing a CD59-Like Complement Inhibitory Molecule1 , 2003, The Journal of Immunology.

[29]  D. Fish,et al.  Genetic Variability within Borrelia burgdorferi Sensu Lato Genospecies Established by PCR-Single-Strand Conformation Polymorphism Analysis of the rrfA-rrlB Intergenic Spacer in Ixodes ricinus Ticks from the Czech Republic , 2003, Applied and Environmental Microbiology.

[30]  L. Schouls,et al.  Identification of Ehrlichia spp. andBorrelia burgdorferi in Ixodes Ticks in the Baltic Regions of Russia , 2001, Journal of Clinical Microbiology.

[31]  Justin C. Fay,et al.  Hitchhiking under positive Darwinian selection. , 2000, Genetics.

[32]  P. Humair,et al.  The wild hidden face of Lyme borreliosis in Europe. , 2000, Microbes and infection.

[33]  E. Dayer,et al.  Scored Antibody Reactivity Determined by Immunoblotting Shows an Association between Clinical Manifestations and Presence of Borrelia burgdorferi sensu stricto, B. garinii, B. afzelii, and B. Valaisianain Humans , 1999, Journal of Clinical Microbiology.

[34]  Ira Schwartz,et al.  Molecular Typing of Borrelia burgdorferiSensu Lato: Taxonomic, Epidemiological, and Clinical Implications , 1999, Clinical Microbiology Reviews.

[35]  Y. Fu,et al.  Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. , 1997, Genetics.

[36]  A. Spielman,et al.  Nondifferentiation between Lyme disease spirochetes from vector ticks and human cerebrospinal fluid. , 1995, The Journal of infectious diseases.

[37]  J. J. Schwartz,et al.  Sequence analysis of the ribosomal RNA operon of the Lyme disease spirochete, Borrelia burgdorferi. , 1994, Gene.

[38]  M Slatkin,et al.  An exact test for neutrality based on the Ewens sampling distribution. , 1994, Genetical research.

[39]  B. M. Jongh,et al.  Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. , 1993, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[40]  W. Burgdorfer,et al.  Erythema chronicum migrans--a tickborne spirochetosis. , 1983, Acta tropica.

[41]  G. A. Watterson,et al.  Heterosis or neutrality? , 1977, Genetics.

[42]  W. Ewens The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.

[43]  S. Wright,et al.  Isolation by Distance. , 1943, Genetics.

[44]  Z. Hubálek Epidemiology of lyme borreliosis. , 2009, Current problems in dermatology.

[45]  M. Derdáková,et al.  Association of genetic variability within the Borrelia burgdorferi sensu lato with the ecology, epidemiology of Lyme borreliosis in Europe. , 2005, Annals of agricultural and environmental medicine : AAEM.

[46]  D. Schaarschmidt,et al.  Detection and molecular typing of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks and in different patient samples from southwest Germany , 2004, European Journal of Epidemiology.

[47]  K. Oizumi,et al.  Rapid Typing of Borrelia burgdorferi Sensu Lato Species in Specimens from Patients with Different Manifestations of Lyme Borreliosis , 2000 .

[48]  S. Rijpkema,et al.  [The clinical manifestations of Lyme borreliosis in the Middle Urals and their association with Borrelia burgdorferi genospecies]. , 1997, Terapevticheskii arkhiv.

[49]  J. Piffaretti,et al.  Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. , 1995, Research in microbiology.

[50]  J. M. Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.