Markov Logic Networks with Numerical Constraints

Markov logic networks (MLNs) have proven to be useful tools for reasoning about uncertainty in complex knowledge bases. In this paper, we extend MLNs with numerical constraints and present an efficient implementation in terms of a cutting plane method. This extension is useful for reasoning over uncertain temporal data. To show the applicability of this extension, we enrich log-linear description logics (DLs) with concrete domains (datatypes). Thereby, allowing to reason over weighted DLs with datatypes. Moreover, we use the resulting formalism to reason about temporal assertions in DB-pedia, thus illustrating its practical use.

[1]  Thomas Lukasiewicz,et al.  Tractable Reasoning with Bayesian Description Logics , 2008, SUM.

[2]  Markus Krötzsch,et al.  The Incredible ELK , 2013, Journal of Automated Reasoning.

[3]  Jan Nößner,et al.  ELOG: A Probabilistic Reasoner for OWL EL , 2011, RR.

[4]  Heiner Stuckenschmidt,et al.  RockIt: Exploiting Parallelism and Symmetry for MAP Inference in Statistical Relational Models , 2013, AAAI.

[5]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[6]  Giorgio Orsi,et al.  Heuristic Ranking in Tightly Coupled Probabilistic Description Logics , 2012, UAI.

[7]  Rafael Peñaloza,et al.  Bayesian Description Logics , 2014, Description Logics.

[8]  Markus Krötzsch,et al.  Practical Reasoning with Nominals in the EL Family of Description Logics , 2012, KR.

[9]  Sebastian Riedel Improving the Accuracy and Efficiency of MAP Inference for Markov Logic , 2008, UAI.

[10]  Guy Van den Broeck,et al.  Probabilistic Inference in Hybrid Domains by Weighted Model Integration , 2015, IJCAI.

[11]  Yevgeny Kazakov,et al.  From Polynomial Procedures to Efficient Reasoning with EL Ontologies , 2013 .

[12]  Ben Taskar,et al.  Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning) , 2007 .

[13]  Evelina Lamma,et al.  Reasoning with Probabilistic Ontologies , 2015, IJCAI.

[14]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[15]  Jean Christoph Jung,et al.  A Closer Look at the Probabilistic Description Logic Prob-EL , 2011, AAAI.

[16]  Guy Van den Broeck,et al.  Hashing-Based Approximate Probabilistic Inference in Hybrid Domains , 2015, UAI.

[17]  Thomas Lukasiewicz,et al.  Expressive probabilistic description logics , 2008, Artif. Intell..

[18]  Pedro M. Domingos,et al.  Hybrid Markov Logic Networks , 2008, AAAI.

[19]  Carsten Lutz,et al.  Probabilistic Description Logics for Subjective Uncertainty , 2010, KR.

[20]  Xinlei Chen,et al.  Never-Ending Learning , 2012, ECAI.

[21]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[22]  Carsten Lutz,et al.  A Tableau Algorithm for Description Logics with Concrete Domains and General TBoxes , 2007, Journal of Automated Reasoning.

[23]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[24]  Georg Gottlob,et al.  Query answering under probabilistic uncertainty in Datalog+ / − ontologies , 2013, Annals of Mathematics and Artificial Intelligence.

[25]  Markus Krötzsch,et al.  The Incredible ELK - From Polynomial Procedures to Efficient Reasoning with ℰℒ Ontologies , 2014, J. Autom. Reason..

[26]  Heiner Stuckenschmidt,et al.  Log-Linear Description Logics , 2011, IJCAI.

[27]  Carsten Lutz,et al.  Combining interval-based temporal reasoning with general TBoxes , 2004, Artif. Intell..

[28]  Jean Christoph Jung,et al.  Ontology-Based Access to Probabilistic Data with OWL QL , 2012, SEMWEB.

[29]  Andrew McCallum,et al.  Introduction to Statistical Relational Learning , 2007 .

[30]  Pavel Klinov Pronto: A Non-monotonic Probabilistic Description Logic Reasoner , 2008, ESWC.

[31]  Franz Baader,et al.  Pushing the EL Envelope , 2005, IJCAI.

[32]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[33]  Ian Horrocks,et al.  Tractable Extensions of the Description Logic EL with Numerical Datatypes , 2010, IJCAR.

[34]  Carsten Lutz,et al.  Description Logics with Concrete Domains-A Survey , 2002, Advances in Modal Logic.

[35]  Heiner Stuckenschmidt,et al.  Completeness and optimality in ontology alignment debugging , 2014, OM.

[36]  Markus Krötzsch Efficient Rule-Based Inferencing for OWL EL , 2011, IJCAI.

[37]  Ian Horrocks,et al.  Tractable Extensions of the Description Logic ${\mathcal{EL}}$ with Numerical Datatypes , 2011, Journal of Automated Reasoning.

[38]  Guy Van den Broeck,et al.  Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam, The Netherlands , 2015, UAI.

[39]  Ciaran O'Reilly,et al.  Probabilistic Inference Modulo Theories , 2016, IJCAI.