Estimation of Choice-Based Models Using Sales Data from a Single Firm

We develop a parameter estimation routine for multinomial logit discrete choice models in which one alternative is completely censored, i.e., when one alternative is never observed to have been chosen in the estimation data set. Our method is based on decomposing the log-likelihood function into marginal and conditional components. Our method is computationally efficient, provides consistent parameter estimates, and can easily incorporate price and other product attributes. Simulations based on industry hotel data demonstrate the superior computational performance of our method over alternative estimation methods that are capable of estimating price effects. Because most existing revenue management choice-based optimization algorithms do not include price as a decision variable, our estimation procedure provides the inputs needed for more advanced product portfolio availability and price optimization models.

[1]  Larry Weatherford,et al.  Review of revenue management methods with dependent demands , 2010 .

[2]  G. Iyengar,et al.  Managing Flexible Products on a Network , 2004 .

[3]  Devavrat Shah,et al.  A Nonparametric Approach to Modeling Choice with Limited Data , 2009, Manag. Sci..

[4]  Richard Ratliff,et al.  Estimating Primary Demand for Substitutable Products from Sales Transaction Data , 2011 .

[5]  Els Gijsbrechts,et al.  The impact of retailer stockouts on whether, how much, and what to buy , 2003 .

[6]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[7]  Ger Koole,et al.  Estimating unconstrained demand rate functions using customer choice sets , 2011 .

[8]  Richard Ratliff,et al.  Estimating Primary Demand for Substitutable Products from Sales Transaction Data , 2011, Oper. Res..

[9]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[10]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[11]  Daniel McFadden,et al.  Modelling the Choice of Residential Location , 1977 .

[12]  D. Hensher Sequential and Full Information Maximum Likelihood Estimation of a Nested Logit Model , 1986 .

[13]  Raymond J. Carroll,et al.  A Note on N Estimators for the Binomial Distribution , 1985 .

[14]  Huseyin Topaloglu,et al.  A New Dynamic Programming Decomposition Method for the Network Revenue Management Problem with Customer Choice Behavior , 2010 .

[15]  Marshall L. Fisher,et al.  Demand Estimation and Assortment Optimization Under Substitution: Methodology and Application , 2007, Oper. Res..

[16]  Garrett J. van Ryzin,et al.  Revenue Management Under a General Discrete Choice Model of Consumer Behavior , 2004, Manag. Sci..

[17]  Juan José Miranda Bront,et al.  A Column Generation Algorithm for Choice-Based Network Revenue Management , 2008, Oper. Res..

[18]  Dan Zhang,et al.  An Approximate Dynamic Programming Approach to Network Revenue Management with Customer Choice , 2009, Transp. Sci..

[19]  R. Ratliff,et al.  A multi-flight recapture heuristic for estimating unconstrained demand from airline bookings , 2008 .

[20]  Steven R. Lerman,et al.  The Estimation of Choice Probabilities from Choice Based Samples , 1977 .

[21]  A. Karlqvist,et al.  Spatial interaction theory and planning models , 1978 .

[22]  Garrett J. van Ryzin,et al.  Simulation-Based Optimization of Virtual Nesting Controls for Network Revenue Management , 2008, Oper. Res..

[23]  K. Talluri A Finite-Population Revenue Management Model and a Risk-Ratio Procedure for the Joint Estimation of Population Size and Parameters , 2009 .

[24]  Mark D. Uncles,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1987 .

[25]  Garrett J. van Ryzin,et al.  OM Practice - Choice-Based Revenue Management: An Empirical Study of Estimation and Optimization , 2010, Manuf. Serv. Oper. Manag..

[26]  M. Dada,et al.  Estimation of Consumer Demand with Stock-Out Based Substitution: An Application to Vending Machine Products , 1998 .

[27]  Joffre Swait,et al.  The Effects of Temporal Consistency of Sales Promotions and Availability on Consumer Choice Behavior , 2002 .

[28]  Garrett J. van Ryzin,et al.  On the Choice-Based Linear Programming Model for Network Revenue Management , 2008, Manuf. Serv. Oper. Manag..

[29]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[30]  Chandra R. Bhat,et al.  Numerical Analysis of Effect of Sampling of Alternatives in Discrete Choice Models , 2004 .

[31]  Mark E. Ferguson,et al.  Estimating Discrete Choice Models with Incomplete Data , 2012 .

[32]  Adrian Pagan,et al.  Two Stage and Related Estimators and Their Applications , 1986 .

[33]  I. Olkin,et al.  A Comparison of n Estimators for the Binomial Distribution , 1981 .

[34]  Mark Ferguson,et al.  Application of discrete choice models to choice-based revenue management problems: A cautionary note , 2012 .

[35]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[36]  Christopher T. Conlon,et al.  Demand Estimation Under Incomplete Product Availability , 2008 .

[37]  Mark E. Ferguson,et al.  Data Set - Choice-Based Revenue Management: Data from a Major Hotel Chain , 2009, Manuf. Serv. Oper. Manag..

[38]  Charles F. Manski,et al.  Alternative Estimators and Sample Designs for Discrete Choice Analysis , 1981 .

[39]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .