The Helmholtz Equation in Random Media: Well-Posedness and A Priori Bounds

We prove well-posedness results and a priori bounds on the solution of the Helmholtz equation $\nabla\cdot(A\nabla u) + k^2 n u = -f$, posed either in $\mathbb{R}^d$ or in the exterior of a star-shaped Lipschitz obstacle, for a class of random $A$ and $n,$ random data $f$, and for all $k>0$. The particular class of $A$ and $n$ and the conditions on the obstacle ensure that the problem is nontrapping almost surely. These are the first well-posedness results and a priori bounds for the stochastic Helmholtz equation for arbitrarily large $k$ and for $A$ and $n$ varying independently of $k$. These results are obtained by combining recent bounds on the Helmholtz equation for deterministic $A$ and $n$ and general arguments (i.e. not specific to the Helmholtz equation) presented in this paper for proving a priori bounds and well-posedness of variational formulations of linear elliptic stochastic PDEs. We emphasise that these general results do not rely on either the Lax-Milgram theorem or Fredholm theory, since neither are applicable to the stochastic variational formulation of the Helmholtz equation.

[1]  Nitakshi Goyal,et al.  General Topology-I , 2017 .

[2]  D. Xiu,et al.  FAST METHOD FOR HIGH-FREQUENCY ACOUSTIC SCATTERING FROM RANDOM SCATTERERS , 2011 .

[3]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[4]  M. Bellassoued Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization , 2003 .

[5]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[6]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[7]  Boris N. Khoromskij,et al.  Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..

[8]  Christoph Schwab,et al.  Electromagnetic wave scattering by random surfaces: uncertainty quantification via sparse tensor boundary elements , 2016 .

[9]  Omar Ghattas,et al.  An Analysis of Infinite Dimensional Bayesian Inverse Shape Acoustic Scattering and Its Numerical Approximation , 2014, SIAM/ASA J. Uncertain. Quantification.

[10]  G. Vodev,et al.  Resonances Near the Real Axis¶for Transparent Obstacles , 1999 .

[11]  Xiaobing Feng,et al.  An efficient Monte Carlo interior penalty discontinuous Galerkin method for elastic wave scattering in random media , 2016, 1605.03910.

[12]  A. Moiola,et al.  Acoustic transmission problems: Wavenumber-explicit bounds and resonance-free regions , 2017, Mathematical Models and Methods in Applied Sciences.

[13]  L. Evans Measure theory and fine properties of functions , 1992 .

[14]  C. Schwab,et al.  Electromagnetic wave scattering by random surfaces: Shape holomorphy , 2017 .

[15]  Gang Bao,et al.  A Robust Numerical Method for the Random Interface Grating Problem via Shape Calculus, Weak Galerkin Method, and Low-Rank Approximation , 2018, J. Sci. Comput..

[16]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[17]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[18]  I. Graham,et al.  Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation , 2010, 1007.3074.

[19]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[20]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[21]  J. Ralston Trapped rays in spherically symmetric media and poles of the scattering matrix , 1971 .

[22]  V. M. Babich,et al.  Short-wavelength diffraction theory : asymptotic methods , 1991 .

[23]  Junshan Lin,et al.  An Efficient Numerical Method for Acoustic Wave Scattering in Random Media , 2014, SIAM/ASA J. Uncertain. Quantification.

[24]  T. Wolff A property of measures inRN and an application to unique continuation , 1992 .

[25]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[26]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[27]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[28]  Guannan Zhang,et al.  Stochastic finite element methods for partial differential equations with random input data* , 2014, Acta Numerica.

[29]  Frances Y. Kuo,et al.  Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation , 2016, Foundations of Computational Mathematics.

[30]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[31]  B. Vainberg,et al.  ON THE SHORT WAVE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF STATIONARY PROBLEMS AND THE ASYMPTOTIC BEHAVIOUR AS t???? OF SOLUTIONS OF NON-STATIONARY PROBLEMS , 1975 .

[32]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[33]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[34]  J. K. Hunter,et al.  Measure Theory , 2007 .

[35]  Simon N. Chandler-Wilde,et al.  High-frequency Bounds for the Helmholtz Equation Under Parabolic Trapping and Applications in Numerical Analysis , 2017, SIAM J. Math. Anal..

[36]  Xiaobing Feng,et al.  An Efficient Monte Carlo-Transformed Field Expansion Method for Electromagnetic Wave Scattering by Random Rough Surfaces , 2018 .

[37]  Kai Zhang,et al.  An efficient alternating direction method of multipliers for optimal control problems constrained by random Helmholtz equations , 2017, Numerical Algorithms.

[38]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[39]  D. Xiu,et al.  An efficient spectral method for acoustic scattering from rough surfaces , 2007 .

[40]  G. Popov,et al.  Quasimodes with exponentially small errors associated with elliptic periodic rays , 2002 .

[41]  Richard B. Melrose,et al.  Singularities of boundary value problems. I , 1978 .

[42]  Stephen Langdon,et al.  Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering* , 2012, Acta Numerica.

[43]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[44]  R. Hiptmair,et al.  Boundary Element Methods , 2021, Oberwolfach Reports.

[45]  Elias M. Stein,et al.  Unique continuation and absence of positive eigenvalues for Schrodinger operators , 1985 .

[46]  I. G. Graham,et al.  Stability and error analysis for the Helmholtz equation with variable coefficients , 2018, 1803.00966.

[47]  Peter Monk,et al.  Wave-Number-Explicit Bounds in Time-Harmonic Scattering , 2008, SIAM J. Math. Anal..

[48]  Ralf Hiptmair,et al.  Large deformation shape uncertainty quantification in acoustic scattering , 2018, Adv. Comput. Math..

[49]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[50]  C. Schwab,et al.  Numerical analysis of lognormal diffusions on the sphere , 2016, Stochastics and Partial Differential Equations: Analysis and Computations.

[51]  Jeffrey Galkowski,et al.  Optimal constants in nontrapping resolvent estimates and applications in numerical analysis , 2018, Pure and Applied Analysis.

[52]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[53]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[54]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[55]  Nicolas Burq,et al.  Semi-classical estimates for the resolvent in nontrapping geometries , 2002 .

[56]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[57]  F. Lin,et al.  Unique continuation for elliptic operators: A geometric‐variational approach , 1987 .

[58]  O. R. Pembery,et al.  The Helmholtz equation in heterogeneous media: A priori bounds, well-posedness, and resonances , 2018, Journal of Differential Equations.

[59]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[60]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[61]  C. J. Gittelson STOCHASTIC GALERKIN DISCRETIZATION OF THE LOG-NORMAL ISOTROPIC DIFFUSION PROBLEM , 2010 .

[62]  Max Gunzburger,et al.  A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.

[63]  Stuart C. Hawkins,et al.  A High Performance Computing and Sensitivity Analysis Algorithm for Stochastic Many-Particle Wave Scattering , 2015, SIAM J. Sci. Comput..