Randomized Intraclass-Distance Minimizing Binary Codes for face recognition

A new algorithm for learning binary codes is presented using randomized initial assignments of bit labels to classes followed by iterative refinement to minimize intraclass Hamming distance. This Randomized Intraclass-Distance Minimizing Binary Codes (RIDMBC) algorithm is introduced in the context of face recognition, an area of biometrics where binary codes have rarely been used (unlike iris recognition). A cross-database experiment is presented training RIDMBC on the Labeled Faces in the Wild (LFW) and testing it on the Point-and-Shoot Challenge (PaSC). The RIDMBC algorithm performs better than both PaSC baselines. RIDMBC is compared with the Predictable Discriminative Binary Codes (DBC) algorithm developed by Rastegari et al. The DBC algorithm has an upper bound on the number of bits in a binary code; RIDMBC does not. RIDMBC outperforms DBC when using the same bit code length as DBC's upper bound and RIDMBC further improves when more bits/features are added.

[1]  Kristen Grauman,et al.  Learning Binary Hash Codes for Large-Scale Image Search , 2013, Machine Learning for Computer Vision.

[2]  Antonio Torralba,et al.  Spectral Hashing , 2008, NIPS.

[3]  Kun Duan,et al.  Discovering localized attributes for fine-grained recognition , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[5]  Bruce A. Draper,et al.  The challenge of face recognition from digital point-and-shoot cameras , 2013, 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[6]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[7]  Bruce A. Draper,et al.  Preliminary studies on the Good, the Bad, and the Ugly face recognition challenge problem , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[8]  Jay Yagnik,et al.  SPEC hashing: Similarity preserving algorithm for entropy-based coding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Shree K. Nayar,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Describable Visual Attributes for Face Verification and Image Search , 2022 .

[10]  Luis Pedro Coelho,et al.  Mahotas: Open source software for scriptable computer vision , 2012, ArXiv.

[11]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[12]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[13]  Alice J. O'Toole,et al.  FRVT 2006 and ICE 2006 Large-Scale Experimental Results , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Peter N. Belhumeur,et al.  Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face Verification , 2012, BMVC.

[15]  Bruce A. Draper,et al.  An introduction to the good, the bad, & the ugly face recognition challenge problem , 2011, Face and Gesture 2011.

[16]  Svetlana Lazebnik,et al.  Iterative quantization: A procrustean approach to learning binary codes , 2011, CVPR 2011.

[17]  Ali Farhadi,et al.  Attribute Discovery via Predictable Discriminative Binary Codes , 2012, ECCV.

[18]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[19]  Ashok A. Ghatol,et al.  Iris recognition: an emerging biometric technology , 2007 .

[20]  Andrew Beng Jin Teoh,et al.  Biometric hash: high-confidence face recognition , 2006, IEEE Transactions on Circuits and Systems for Video Technology.