Phylogenetic incongruence in the Drosophila melanogaster species group.

Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) the node joining the Drosophila erecta-Drosophila orena, Drosophila melanogaster-Drosophila simulans, and Drosophila yakuba-Drosophila teissieri lineages, and (2) the node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta-D. orena and D. yakuba-D. teissieri. By contrast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii, and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations. Such lineage sorting may lead to biased estimation of tree topology and evolutionary rates, and may confound inferences of positive selection.

[1]  M. Ashburner,et al.  The molecular evolution of the alcohol dehydrogenase and alcohol dehydrogenase-related genes in the Drosophila melanogaster species subgroup. , 1994, Molecular biology and evolution.

[2]  J. Bull,et al.  Combining data in phylogenetic analysis. , 1996, Trends in ecology & evolution.

[3]  S. Henikoff,et al.  Positive Selection of Iris, a Retroviral Envelope–Derived Host Gene in Drosophila melanogaster , 2005, PLoS genetics.

[4]  Steven Poe,et al.  BIRDS IN A BUSH: FIVE GENES INDICATE EXPLOSIVE EVOLUTION OF AVIAN ORDERS , 2004, Evolution; international journal of organic evolution.

[5]  Inna Dubchak,et al.  Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. , 2005, Genome research.

[6]  M. Nei,et al.  Relationships between gene trees and species trees. , 1988, Molecular biology and evolution.

[7]  F. K. Barker,et al.  The utility of the incongruence length difference test. , 2002, Systematic biology.

[8]  A. Kopp Basal relationships in the Drosophila melanogaster species group. , 2006, Molecular phylogenetics and evolution.

[9]  P. Waddell,et al.  Rapid evaluation of the phylogenetic congruence of sequence data using likelihood ratio tests. , 2000, Molecular biology and evolution.

[10]  J. McCarter,et al.  The population genetics of the origin and divergence of the Drosophila simulans complex species. , 2000, Genetics.

[11]  Eric Vigoda,et al.  Phylogenetic MCMC Algorithms Are Misleading on Mixtures of Trees , 2005, Science.

[12]  F. Ayala,et al.  Functional Constraints of the Cu,Zn Superoxide Dismutase in Species of the Drosophila melanogaster Subgroup and Phylogenetic Analysis , 2002, Journal of Molecular Evolution.

[13]  M. Ashburner,et al.  Historical Biogeography of the Drosophila melanogaster Species Subgroup , 1988 .

[14]  N. Rosenberg,et al.  Discordance of Species Trees with Their Most Likely Gene Trees , 2006, PLoS genetics.

[15]  Michael M. Miyamoto,et al.  TESTING SPECIES PHYLOGENIES AND PHYLOGENETIC METHODS WITH CONGRUENCE , 1995 .

[16]  C. Bult,et al.  TESTING SIGNIFICANCE OF INCONGRUENCE , 1994 .

[17]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[18]  J. True,et al.  Evolution of male sexual characters in the Oriental Drosophila melanogaster species group , 2002, Evolution & development.

[19]  M. Nei,et al.  Molecular phylogeny and divergence times of drosophilid species. , 1995, Molecular biology and evolution.

[20]  F. Lemeunier The melanogaster species group , 1986 .

[21]  Artyom Kopp,et al.  Phylogeny of the Oriental Drosophila melanogaster species group: a multilocus reconstruction. , 2002, Systematic biology.

[22]  Daniel J. Wilson,et al.  Estimating Diversifying Selection and Functional Constraint in the Presence of Recombination , 2006, Genetics.

[23]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[24]  R. Nielsen,et al.  Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. , 2003, Genetics.

[25]  S. Carroll,et al.  Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene , 2006, Nature.

[26]  J. Bull,et al.  A LIKELIHOOD RATIO TEST TO DETECT CONFLICTING , 1996 .

[27]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[28]  Mitochondrial DNA sequence divergence in the Melanogaster and oriental species subgroups of Drosophila. , 1991, Journal of molecular evolution.

[29]  A. Kluge A Concern for Evidence and a Phylogenetic Hypothesis of Relationships among Epicrates (Boidae, Serpentes) , 1989 .

[30]  S. Carroll,et al.  Genome-scale approaches to resolving incongruence in molecular phylogenies , 2003, Nature.

[31]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[32]  E. Eliopoulos,et al.  Macroevolutionary relationships of species of Drosophila melanogaster group based on mtDNA sequences. , 2003, Molecular phylogenetics and evolution.

[33]  John P. Huelsenbeck,et al.  A Likelihood Ratio Test to Detect Conflicting Phylogenetic Signal , 1996 .

[34]  G. Lecointre,et al.  When does the incongruence length difference test fail? , 2002, Molecular biology and evolution.

[35]  S. Carroll,et al.  Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. , 2002, Development.

[36]  M. Ruvolo,et al.  Molecular phylogeny of the hominoids: inferences from multiple independent DNA sequence data sets. , 1997, Molecular biology and evolution.

[37]  Chung-I Wu,et al.  Inferences of species phylogeny in relation to segregation of ancient polymorphisms. , 1991, Genetics.

[38]  C. Orme,et al.  Noise and incongruence: interpreting results of the incongruence length difference test. , 2000, Molecular phylogenetics and evolution.

[39]  M. Nei,et al.  Relationships between Gene Trees and Species Trees1 , 1998 .

[40]  Dirk Husmeier,et al.  TOPALi: software for automatic identification of recombinant sequences within DNA multiple alignments , 2004, Bioinform..

[41]  A. Wong,et al.  Evolutionary Expressed Sequence Tag Analysis of Drosophila Female Reproductive Tracts Identifies Genes Subjected to Positive Selection , 2004, Genetics.

[42]  D. Husmeier,et al.  Detecting recombination in 4-taxa DNA sequence alignments with Bayesian hidden Markov models and Markov chain Monte Carlo. , 2003, Molecular biology and evolution.

[43]  Hiroshi Akashi,et al.  Molecular Phylogeny of the Drosophila melanogaster Species Subgroup , 2003, Journal of Molecular Evolution.

[44]  Ya-ping Zhang,et al.  Phylogenetic relationships of Drosophila melanogaster species group deduced from spacer regions of histone gene H2A-H2B. , 2004, Molecular phylogenetics and evolution.

[45]  A. Mooers,et al.  The phylogeny of the subgroups within the melanogaster species group: likelihood tests on COI and COII sequences and a Bayesian estimate of phylogeny. , 2005, Molecular phylogenetics and evolution.

[46]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[47]  J. Slowinski,et al.  Molecular polytomies. , 2001, Molecular phylogenetics and evolution.

[48]  N. Goldman,et al.  Codon-substitution models for heterogeneous selection pressure at amino acid sites. , 2000, Genetics.

[49]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[50]  A. von Haeseler,et al.  Comparative evolutionary analysis of rDNA ITS regions in Drosophila. , 1994, Molecular biology and evolution.

[51]  James H. Degnan,et al.  GENE TREE DISTRIBUTIONS UNDER THE COALESCENT PROCESS , 2005, Evolution; international journal of organic evolution.

[52]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[53]  C. Wu,et al.  The phylogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Klein,et al.  DNA archives and our nearest relative: the trichotomy problem revisited. , 2000, Molecular phylogenetics and evolution.

[55]  M. Cariou Biochemical phylogeny of the eight species in the Drosophila melanogaster subgroup, including D. sechellia and D. orena. , 1987, Genetical research.

[56]  D. Higgins,et al.  Molecular phylogeny of the subgenus Sophophora of Drosophila derived from large subunit of ribosomal RNA sequences , 2004, Genetica.

[57]  Lior Pachter,et al.  MAVID: constrained ancestral alignment of multiple sequences. , 2003, Genome research.

[58]  S. Whelan,et al.  Statistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics. , 2000, Molecular biology and evolution.

[59]  V. Schawaroch,et al.  Phylogeny of a paradigm lineage: the Drosophila melanogaster species group (Diptera: Drosophilidae) , 2002 .

[60]  D. Yamamoto,et al.  A phylogeny of the Drosophilidae using the sex-behaviour gene fruitless. , 2000, Hereditas.

[61]  H. Shaffer,et al.  Multiple data sets, high homoplasy, and the phylogeny of softshell turtles (Testudines: Trionychidae). , 2004, Systematic biology.