Error Characterization of Global Land Evapotranspiration Products: Collocation-based approach

[1]  G. Chirico,et al.  Regional assessment of daily reference evapotranspiration: Can ground observations be replaced by blending ERA5-Land meteorological reanalysis and CM-SAF satellite-based radiation data? , 2021, Agricultural Water Management.

[2]  Yaoming Ma,et al.  Terrestrial and Atmospheric Controls on Surface Energy Partitioning and Evaporative Fraction Regimes Over the Tibetan Plateau in the Growing Season , 2021, Journal of Geophysical Research: Atmospheres.

[3]  H. R. Etedali,et al.  Evaluation of various meteorological datasets in estimation yield and actual evapotranspiration of wheat and maize (case study: Qazvin plain) , 2021 .

[4]  Seokhyeon Kim,et al.  Improving the Combination of Satellite Soil Moisture Data Sets by Considering Error Cross Correlation: A Comparison Between Triple Collocation (TC) and Extended Double Instrumental Variable (EIVD) Alternatives , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Fabio Di Nunno,et al.  Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks , 2021 .

[6]  A. Vrieling,et al.  A global assessment of PT-JPL soil evaporation in agroecosystems with optical, thermal, and microwave satellite data , 2021 .

[7]  T. A. Black,et al.  The three major axes of terrestrial ecosystem function , 2021, Nature.

[8]  T. Fahey,et al.  A catchment water balance assessment of an abrupt shift in evapotranspiration at the Hubbard Brook Experimental Forest, New Hampshire, USA , 2021, Hydrological Processes.

[9]  Minha Choi,et al.  Integration of multiple drought indices using a triple collocation approach , 2021, Stochastic Environmental Research and Risk Assessment.

[10]  Sami G. Al‐Ghamdi,et al.  Evapotranspiration and water availability response to climate change in the Middle East and North Africa , 2021, Climatic Change.

[11]  Dawen Yang,et al.  Hydrological cycle and water resources in a changing world: A review , 2021 .

[12]  A. Stoffelen,et al.  Quadruple Collocation Analysis of In‐Situ, Scatterometer, and NWP Winds , 2021 .

[13]  W. Buermann,et al.  Evapotranspiration in the Amazon: spatial patterns, seasonality, and recent trends in observations, reanalysis, and climate models , 2021 .

[14]  Dongryeol Ryu,et al.  Time-variant error characterization of SMAP and ASCAT soil moisture using Triple Collocation Analysis , 2021 .

[15]  X. Zeng,et al.  Understanding water and energy fluxes in the Amazonia: Lessons from an observation‐model intercomparison , 2021, Global change biology.

[16]  T. Stacke,et al.  Global terrestrial water storage and drought severity under climate change , 2021, Nature Climate Change.

[17]  Xiuliang Jin,et al.  Long time series of daily evapotranspiration in China based on the SEBAL model and multisource images and validation , 2020, Earth System Science Data.

[18]  Shijun Sun,et al.  Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods , 2020 .

[19]  J. Shiri,et al.  Assessing temporal data partitioning scenarios for estimating reference evapotranspiration with machine learning techniques in arid regions , 2020 .

[20]  J. Józsa,et al.  Benchmarking large-scale evapotranspiration estimates: A perspective from a calibration-free complementary relationship approach and FLUXCOM , 2020, Journal of Hydrology.

[21]  G. Ren,et al.  Contributions of Global Warming and Urbanization to the Intensification of Human‐Perceived Heatwaves Over China , 2020, Journal of Geophysical Research: Atmospheres.

[22]  S.K. Sun,et al.  Evaluation of the mechanisms and performances of major satellite-based evapotranspiration models in Northwest China , 2020 .

[23]  N. Verhoest,et al.  Evaluating the land-surface energy partitioning in ERA5 , 2020 .

[24]  Gregory R. Quetin,et al.  Data-driven estimates of evapotranspiration and its controls in the Congo Basin , 2020, Hydrology and Earth System Sciences.

[25]  Jonas Ardö,et al.  The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data , 2020, Scientific Data.

[26]  J.-P. Wigneron,et al.  Validation practices for satellite soil moisture retrievals: What are (the) errors? , 2020 .

[27]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[28]  Agustinus Ribal,et al.  Global Calibration and Error Estimation of Altimeter, Scatterometer, and Radiometer Wind Speed Using Triple Collocation , 2020, Remote. Sens..

[29]  R. Vervoort,et al.  Long-term surface water trends and relationship with open water evaporation losses in the Namoi catchment, Australia , 2020 .

[30]  Fangni Lei,et al.  Triple Collocation Based Multi-Source Precipitation Merging , 2020, Frontiers in Water.

[31]  Z. Duan,et al.  An instrument variable based algorithm for estimating cross-correlated hydrological remote sensing errors , 2020 .

[32]  D. Entekhabi,et al.  Terrestrial Evaporation and Moisture Drainage in a Warmer Climate , 2019, Geophysical Research Letters.

[33]  C. Frankenberg,et al.  Evaluation and mechanism exploration of the diurnal hysteresis of ecosystem fluxes , 2019, Agricultural and Forest Meteorology.

[34]  P. Gentine,et al.  Land–atmosphere interactions in the tropics – a review , 2019, Hydrology and Earth System Sciences.

[35]  Atul K. Jain,et al.  Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach , 2019, Biogeosciences.

[36]  Atul K. Jain,et al.  Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling , 2019, Hydrology and Earth System Sciences.

[37]  Wade T. Crow,et al.  A Monte Carlo based adaptive Kalman filtering framework for soil moisture data assimilation , 2019, Remote Sensing of Environment.

[38]  W. Crow,et al.  A double instrumental variable method for geophysical product error estimation , 2019, Remote Sensing of Environment.

[39]  T. McVicar,et al.  Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017 , 2019, Remote Sensing of Environment.

[40]  C. Zheng,et al.  A simple and objective method to partition evapotranspiration into transpiration and evaporation at eddy-covariance sites , 2019, Agricultural and Forest Meteorology.

[41]  M. Reichstein,et al.  The FLUXCOM ensemble of global land-atmosphere energy fluxes , 2018, Scientific Data.

[42]  Lifeng Wu,et al.  Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models , 2018, Journal of Hydrology.

[43]  W. Crow,et al.  The Added Value of Assimilating Remotely Sensed Soil Moisture for Estimating Summertime Soil Moisture‐Air Temperature Coupling Strength , 2018, Water Resources Research.

[44]  Wade T. Crow,et al.  Global-scale Evaluation of SMAP, SMOS and ASCAT Soil Moisture Products using Triple Collocation. , 2018, Remote sensing of environment.

[45]  Yang Hong,et al.  Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the Triple Collocation method across Mainland China , 2018, Journal of Hydrology.

[46]  Yongqiang Zhang,et al.  Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems , 2018 .

[47]  P. Ciais,et al.  Partitioning global land evapotranspiration using CMIP5 models constrained by observations , 2018, Nature Climate Change.

[48]  Pierre Gentine,et al.  Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges , 2018, Annals of the New York Academy of Sciences.

[49]  Wenming Lin,et al.  Error Characterization of Sea Surface Salinity Products Using Triple Collocation Analysis , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Minha Choi,et al.  Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach , 2018 .

[51]  Wouter H. Maes,et al.  Potential evaporation at eddy-covariance sites across the globe , 2018, Hydrology and Earth System Sciences.

[52]  Markus Reichstein,et al.  Towards physiologically meaningful water‐use efficiency estimates from eddy covariance data , 2018, Global change biology.

[53]  A. Arneth,et al.  How do leaf and ecosystem measures of water-use efficiency compare? , 2017, The New phytologist.

[54]  Ronglin Tang,et al.  Estimating Daily Evapotranspiration From Remotely Sensed Instantaneous Observations With Simplified Derivations of a Theoretical Model , 2017 .

[55]  Hongliang Fang,et al.  Inconsistencies of interannual variability and trends in long‐term satellite leaf area index products , 2017, Global change biology.

[56]  W. Verhoef,et al.  Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa , 2017 .

[57]  C. Cammalleri,et al.  Comparing soil moisture anomalies from multiple independent sources over different regions across the globe , 2017 .

[58]  Xi Chen,et al.  Evaluation of GLDAS-1 and GLDAS-2 Forcing Data and Noah Model Simulations over China at the Monthly Scale , 2016 .

[59]  N. Verhoest,et al.  GLEAM v3: satellite-based land evaporation and root-zone soil moisture , 2016 .

[60]  Lei Wang,et al.  A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method , 2016 .

[61]  Wade T. Crow,et al.  Recent advances in (soil moisture) triple collocation analysis , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[62]  Matthew F. McCabe,et al.  The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets , 2015 .

[63]  Stephen P. Good,et al.  Global synthesis of vegetation control on evapotranspiration partitioning , 2014 .

[64]  Ad Stoffelen,et al.  Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target , 2014 .

[65]  Wade T. Crow,et al.  Beyond triple collocation: Applications to soil moisture monitoring , 2014 .

[66]  Wade T. Crow,et al.  Evaluation of Assumptions in Soil Moisture Triple Collocation Analysis , 2014 .

[67]  M. Mccabe,et al.  Multi-site evaluation of terrestrial evaporation models using FLUXNET data , 2014 .

[68]  Wade T. Crow,et al.  An objective methodology for merging satellite‐ and model‐based soil moisture products , 2012 .

[69]  Kelly K. Caylor,et al.  Dryland ecohydrology and climate change: critical issues and technical advances , 2012 .

[70]  M. Bosilovich,et al.  Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations , 2012 .

[71]  S. Seneviratne,et al.  Global intercomparison of 12 land surface heat flux estimates , 2011 .

[72]  T. Holmes,et al.  Global land-surface evaporation estimated from satellite-based observations , 2010 .

[73]  S. Seneviratne,et al.  Recent decline in the global land evapotranspiration trend due to limited moisture supply , 2010, Nature.

[74]  Yongqiang Zhang,et al.  Using long‐term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution , 2010 .

[75]  Amélie Rajaud,et al.  A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman‐Monteith equation , 2008 .

[76]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[77]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[78]  A. Stoffelen Toward the true near-surface wind speed: Error modeling and calibration using triple collocation , 1998 .

[79]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[80]  Kun Yang,et al.  Global evaluation of terrestrial near-surface air temperature and specific humidity retrievals from the Atmospheric Infrared Sounder (AIRS) , 2021, Remote Sensing of Environment.

[81]  Limin Yang,et al.  An analysis of the IGBP global land-cover characterization process , 1999 .