Observation of scalar nuclear spin–spin coupling in van der Waals complexes

Scalar couplings between covalently bound nuclear spins are a ubiquitous feature in nuclear magnetic resonance (NMR) experiments, imparting valuable information to NMR spectra regarding molecular structure and conformation. Such couplings arise due to a second-order hyperfine interaction, and, in principle, the same mechanism should lead to scalar couplings between nuclear spins in unbound van der Waals complexes. Here, we report the first observation of scalar couplings between nuclei in van der Waals complexes. Our measurements are performed in a solution of hyperpolarized 129Xe and pentane, using superconducting quantum interference devices to detect NMR in 10 mG fields, and are in good agreement with calculations based on density functional theory. van der Waals forces play an important role in many physical phenomena. The techniques presented here may provide a new method for probing such interactions.

[1]  P. Bouř,et al.  Computational and experimental evidence of through-space NMR spectroscopic J coupling of hydrogen atoms. , 2012, Chemistry.

[2]  M. Pecul,et al.  Theoretical prediction of the spin-spin coupling constants between an axis and macrocycle of a rotaxane. , 2011, The journal of physical chemistry. A.

[3]  David L Bryce,et al.  Direct detection of CH/pi interactions in proteins. , 2010, Nature chemistry.

[4]  W. R. Dolbier,et al.  Guide to Fluorine NMR for Organic Chemists , 2009 .

[5]  I. Ruset,et al.  Optical pumping system design for large production of hyperpolarized. , 2006, Physical review letters.

[6]  F. Rastrelli,et al.  NMR techniques for the investigation of solvation phenomena and non-covalent interactions , 2005 .

[7]  Bernhard Blümich,et al.  Mobile high resolution xenon nuclear magnetic resonance spectroscopy in the earth's magnetic field. , 2005, Physical review letters.

[8]  S. Grzesiek,et al.  Insights into biomolecular hydrogen bonds from hydrogen bond scalar couplings , 2004 .

[9]  M. Bühl,et al.  Introduction: The Quantum Chemical Calculation of NMR and EPR Parameters , 2004 .

[10]  O. Malkina,et al.  Visualization of nuclear spin-spin coupling pathways by real-space functions. , 2003, Angewandte Chemie.

[11]  M. Romalis,et al.  Enhancement of SQUID-detected NMR signals with hyperpolarized liquid 129Xe in a 1 microT magnetic field. , 2003, Physical review letters.

[12]  A. Bagno,et al.  DFT study of the NMR properties of xenon in covalent compounds and van der waals complexes-implications for the use of 129Xe as a molecular probe. , 2003, Chemistry.

[13]  C. McCabe,et al.  Predicting the solubility of xenon in n-hexane and n-perfluorohexane: a simulation and theoretical study , 2002 .

[14]  A. Bagno,et al.  Through-space spin-spin coupling in van der Waals dimers and CH/pi interacting systems. An ab initio and DFT study. , 2002, Chemistry.

[15]  M. Pecul,et al.  The 19F–1H coupling constants transmitted through covalent, hydrogen bond, and van der Waals interactions , 2001 .

[16]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[17]  A. Bagno,et al.  DFT Calculation of Intermolecular Nuclear Spin-Spin Coupling in van der Waals Dimers. , 2001, Angewandte Chemie.

[18]  M. Pecul The nuclear spin–spin coupling constant in He2 , 2000 .

[19]  E. Oldfield,et al.  Computation of Through-Space 19F−19F Scalar Couplings via Density Functional Theory , 2000 .

[20]  Jochen Autschbach,et al.  Nuclear spin–spin coupling constants from regular approximate relativistic density functional calculations. II. Spin–orbit coupling effects and anisotropies , 2000 .

[21]  A. Bagno Quantum chemical modeling of through-hydrogen bond spin-spin coupling in amides and ubiquitin. , 2000, Chemistry.

[22]  Jochen Autschbach,et al.  Nuclear spin–spin coupling constants from regular approximate relativistic density functional calculations. I. Formalism and scalar relativistic results for heavy metal compounds , 2000 .

[23]  F. Salsbury,et al.  Estimation of the Fermi contact contribution to the xenon-hydrogen and xenon-xenon spin-spin coupling constants , 1998 .

[24]  W. Happer,et al.  Cross-relaxation in laser-polarized liquid xenon , 1998 .

[25]  J. Rooke,et al.  Growth performance and gut function of piglets weaned at four weeks of age and fed protease-treated soya-bean meal , 1998 .

[26]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[27]  Gil Navon,et al.  Enhancement of Solution NMR and MRI with Laser-Polarized Xenon , 1996, Science.

[28]  Walker,et al.  Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms. , 1989, Physical review. A, General physics.

[29]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[30]  A. Vasserman,et al.  Thermophysical Properties of Neon, Argon, Krypton, and Xenon , 1987 .

[31]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[32]  U. Haeberlen,et al.  Approach to High-Resolution nmr in Solids , 1968 .

[33]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[34]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[35]  Y. Greenberg,et al.  Application of superconducting quantum interference devices to nuclear magnetic resonance , 1998 .

[36]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[37]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .