The importance of geometry in mathematical models of developing systems.

Understanding the interaction between the spatial variation of extracellular signals and the interpretation of such signals in embryonic development is difficult without a mathematical model, but the inherent limitations of a model can have a profound impact on its utility. A central issue is the level of abstraction needed, and here we focus on the role of geometry in models and how the choice of the spatial dimension can influence the conclusions reached. A widely studied system in which the proper choice of geometry is critical is embryonic development of Drosophila melanogaster, and we discuss recent work in which 3D embryo-scale modeling is used to identify key modes of transport, analyze gap gene expression, and test BMP-mediated positive feedback mechanisms.

[1]  Robert Dillon,et al.  Short- and long-range effects of Sonic hedgehog in limb development , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  David M. Umulis,et al.  Robust, bistable patterning of the dorsal surface of the Drosophila embryo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Charless C. Fowlkes,et al.  Analysis of Gap Gene Regulation in a 3D Organism-Scale Model of the Drosophila melanogaster Embryo , 2011, PloS one.

[4]  J. Sharpe,et al.  4D retrospective lineage tracing using SPIM for zebrafish organogenesis studies , 2011, Journal of biophotonics.

[5]  Charless C. Fowlkes,et al.  Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline , 2006, Genome Biology.

[6]  F. Naef,et al.  Whole-embryo modeling of early segmentation in Drosophila identifies robust and fragile expression domains. , 2011, Biophysical journal.

[7]  D. Iber,et al.  The mechanism of sudden stripe formation during dorso-ventral patterning in Drosophila , 2007, Journal of mathematical biology.

[8]  Ruth E Baker,et al.  Mathematical models of morphogen gradients and their effects on gene expression , 2012, Wiley interdisciplinary reviews. Developmental biology.

[9]  L. Lu,et al.  Distance measurements via the morphogen gradient of Bicoid in Drosophila embryos , 2010, BMC Developmental Biology.

[10]  James Sharpe,et al.  Budding behaviors: Growth of the limb as a model of morphogenesis , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[11]  G. Martin,et al.  Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development , 2000, Nature Genetics.

[12]  Charless C. Fowlkes,et al.  A Quantitative Spatiotemporal Atlas of Gene Expression in the Drosophila Blastoderm , 2008, Cell.

[13]  M. Mullins,et al.  The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. , 2008, Developmental cell.

[14]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[15]  James A Glazier,et al.  Multicell simulations of development and disease using the CompuCell3D simulation environment. , 2009, Methods in molecular biology.

[16]  Eric F. Wieschaus,et al.  The Formation of the Bicoid Morphogen Gradient Requires Protein Movement from Anteriorly Localized mRNA , 2011, PLoS biology.

[17]  Yina Li,et al.  Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity , 2002, Nature.

[18]  Steffen Lemke,et al.  BMP-dependent serosa and amnion specification in the scuttle fly Megaselia abdita , 2012, Development.

[19]  Charless C. Fowlkes,et al.  Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution II: dynamics , 2006, Genome Biology.

[20]  N. Barkai,et al.  Scaling of the BMP activation gradient in Xenopus embryos , 2008, Nature.

[21]  Abbas Shirinifard,et al.  Multi-scale modeling of tissues using CompuCell3D. , 2012, Methods in cell biology.

[22]  A. Mogilner,et al.  Modeling cellular processes in 3D. , 2011, Trends in cell biology.

[23]  D. Odde,et al.  Assessment of Transport Mechanisms Underlying the Bicoid Morphogen Gradient , 2011, Cellular and molecular bioengineering.

[24]  David M. Umulis,et al.  The extracellular regulation of bone morphogenetic protein signaling , 2009, Development.

[25]  N. Barkai,et al.  Robustness of the BMP morphogen gradient in Drosophila embryonic patterning , 2022 .

[26]  W. Bialek,et al.  Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient , 2007, Cell.

[27]  Kwanghun Chung,et al.  A microfluidic array for large-scale ordering and orientation of embryos , 2010, Nature Methods.

[28]  H G Othmer,et al.  A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud. , 1999, Journal of theoretical biology.

[29]  Philipp J. Keller,et al.  Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy , 2008, Science.

[30]  A. Brivanlou,et al.  Scaling of BMP gradients in Xenopus embryos , 2009, Nature.

[31]  Mathieu Coppey,et al.  Modelling the Bicoid gradient , 2010, Development.

[32]  Qing Nie,et al.  Formation of the BMP activity gradient in the Drosophila embryo. , 2005, Developmental cell.

[33]  E. Robertis,et al.  Extracellular regulation of BMP signaling , 2010, Current Biology.

[34]  Rajan P Kulkarni,et al.  Tunability and Noise Dependence in Differentiation Dynamics , 2007, Science.

[35]  Qing Nie,et al.  Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo. , 2007, Journal of theoretical biology.

[36]  Philipp J. Keller,et al.  Digital scanned laser light-sheet fluorescence microscopy (DSLM) of zebrafish and Drosophila embryonic development. , 2011, Cold Spring Harbor protocols.

[37]  John Reinitz,et al.  FlyEx, the quantitative atlas on segmentation gene expression at cellular resolution , 2008, Nucleic Acids Res..

[38]  David M. Umulis,et al.  Organism-scale modeling of early Drosophila patterning via bone morphogenetic proteins. , 2010, Developmental cell.