Driving a Liquid Crystal Phase Transition Using a Photochromic Hydrazone.

The dynamic manipulation of the properties of soft matter can lead to adaptive functional materials that can be used in advanced applications. Here we report on a new chiral dopant, built on an isosorbide scaffold attached to two bistable hydrazone-based light switches that can be used to control the self-assembly, and hence photophysical properties, of nematic liquid crystals (LCs). The bistability of the switch allows kinetic trapping of various helical assemblies as a function of the photostationary states, resulting in the reflection of different wavelengths of light. Surprisingly, doping 5CB with the chiral switch, followed by irradiation with blue light, triggers an isothermal phase change from the helical cholesteric phase to the untwisted lamellar smectic A* phase. This transition was used to modulate the transparency of a LC film, resulting in a light-gated optical window.

[1]  S. Hecht,et al.  Visible-Light-Activated Molecular Switches. , 2015, Angewandte Chemie.

[2]  K. Akagi,et al.  Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants. , 2012, Journal of the American Chemical Society.

[3]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[4]  M. Irie,et al.  An Optically Active Diarylethene Having Cholesterol Units: A Dopant for Photoswitching of Liquid Crystal Phases , 2000 .

[5]  Francesco Zerbetto,et al.  Macroscopic transport by synthetic molecular machines , 2005, Nature materials.

[6]  S. Hecht,et al.  o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. , 2012, Journal of the American Chemical Society.

[7]  Yan-qing Lu,et al.  Light‐Driven Reversible Transformation between Self‐Organized Simple Cubic Lattice and Helical Superstructure Enabled by a Molecular Switch Functionalized Nanocage , 2018, Advanced materials.

[8]  H. Bisoyi,et al.  Light-Directed Dynamic Chirality Inversion in Functional Self-Organized Helical Superstructures. , 2016, Angewandte Chemie.

[9]  M. Baroncini,et al.  Solution and Solid-State Emission Toggling of a Photochromic Hydrazone , 2018, Journal of the American Chemical Society.

[10]  I. Aprahamian,et al.  Building Strain with Large Macrocycles and Using It To Tune the Thermal Half-Lives of Hydrazone Photochromes. , 2018, Journal of the American Chemical Society.

[11]  Arri Priimagi,et al.  A light-driven artificial flytrap , 2017, Nature Communications.

[12]  A. Credi,et al.  Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld , 2008 .

[13]  J. Lehn Perspectives in chemistry--steps towards complex matter. , 2013, Angewandte Chemie.

[14]  Augustine Urbas,et al.  Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches. , 2012, Journal of the American Chemical Society.

[15]  Dirk J. Broer,et al.  A chaotic self-oscillating sunlight-driven polymer actuator , 2016, Nature Communications.

[16]  P. Haycock,et al.  Arylazopyrazoles: azoheteroarene photoswitches offering quantitative isomerization and long thermal half-lives. , 2014, Journal of the American Chemical Society.

[17]  B. Feringa,et al.  Reversible photochemical control of cholesteric liquid crystals with a diamine-based diarylethene chiroptical switch , 2011 .

[18]  E. W. Meijer,et al.  Making waves in a photoactive polymer film , 2017, Nature.

[19]  Ben L Feringa,et al.  Amplification of chirality in liquid crystals. , 2006, Organic & biomolecular chemistry.

[20]  I. Aprahamian,et al.  The importance of the rotor in hydrazone-based molecular switches , 2012, Beilstein journal of organic chemistry.

[21]  Timothy J. Bunning,et al.  Dynamic color in stimuli-responsive cholesteric liquid crystals , 2010 .

[22]  N. Katsonis,et al.  Fluorinated Azobenzenes for Shape-Persistent Liquid Crystal Polymer Networks. , 2016, Angewandte Chemie.

[23]  T. Ikeda,et al.  Photomechanics: Directed bending of a polymer film by light , 2003, Nature.

[24]  H. Ohno,et al.  Nanostructured liquid crystals combining ionic and electronic functions. , 2010, Journal of the American Chemical Society.

[25]  Takuma Yasuda,et al.  Liquid-Crystalline Catenanes and Rotaxanes , 2012 .

[26]  K. Griesar,et al.  125 years of liquid crystals--a scientific revolution in the home. , 2013, Angewandte Chemie.

[27]  A. Urbas,et al.  A Photoswitchable and Thermally Stable Axially Chiral Dithienylperfluorocyclopentene Dopant With High Helical Twisting Power , 2013 .

[28]  Yutaka Kuwahara,et al.  Photocontrolled manipulation of a microscale object: a rotational or translational mechanism. , 2011, Chemistry.

[29]  Krzysztof Matyjaszewski,et al.  From precision polymers to complex materials and systems , 2016 .

[30]  J. Bara,et al.  Liquid crystalline functional assemblies and their supramolecular structures , 2008 .

[31]  Reji Thomas,et al.  Influence of a change in helical twisting power of photoresponsive chiral dopants on rotational manipulation of micro-objects on the surface of chiral nematic liquid crystalline films. , 2012, Chemistry.

[32]  J. F. Stoddart,et al.  Molecular, Supramolecular, and Macromolecular Motors and Artificial Muscles , 2009 .

[33]  Yanlei Yu,et al.  Photomechanics of liquid-crystalline elastomers and other polymers. , 2007, Angewandte Chemie.

[34]  Wesley R. Browne,et al.  Molecular Switches: FERINGA:MOL.SWIT.2ED 2VOL O-BK , 2011 .

[35]  Nathalie Katsonis,et al.  Molecular machines: Nanomotor rotates microscale objects , 2006, Nature.

[36]  Masafumi Yoshio,et al.  Induction of columnar and smectic phases for spiropyran derivatives: effects of acidichromism and photochromism. , 2008, Chemistry, an Asian journal.

[37]  Chunhua Yan,et al.  Luminescence‐Driven Reversible Handedness Inversion of Self‐Organized Helical Superstructures Enabled by a Novel Near‐Infrared Light Nanotransducer , 2015, Advanced materials.

[38]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[39]  I. Aprahamian,et al.  Waste management of chemically activated switches: using a photoacid to eliminate accumulation of side products. , 2014, Journal of the American Chemical Society.

[40]  J. F. Stoddart,et al.  A redox-switchable [2]rotaxane in a liquid-crystalline state. , 2010, Chemical communications.

[41]  N. Clark,et al.  Photocontrolled nanophase segregation in a liquid-crystal solvent , 1999, Nature.

[42]  I. Aprahamian,et al.  Photochromic Hydrazone Switches with Extremely Long Thermal Half-Lives. , 2017, Journal of the American Chemical Society.

[43]  Michael G Debije,et al.  Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. , 2012, Angewandte Chemie.

[44]  S. K. Prasad,et al.  Dynamic Self‐Assembly of the Liquid‐Crystalline Smectic A Phase , 2005 .

[45]  Jie Xiang,et al.  Reversible Isothermal Twist-Bend Nematic-Nematic Phase Transition Driven by the Photoisomerization of an Azobenzene-Based Nonsymmetric Liquid Crystal Dimer. , 2016, Journal of the American Chemical Society.

[46]  A. Urbas,et al.  Synthesis and characterization of light-driven dithienylcyclopentene switches with axial chirality. , 2011, The Journal of organic chemistry.

[47]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.

[48]  S. K. Prasad,et al.  Nonequilibrium liquid crystalline layered phase stabilized by light. , 2007, Journal of Physical Chemistry B.

[49]  Jared T. Incorvati,et al.  Organic Switches for Surfaces and Devices , 2013, Advanced materials.

[50]  A. Urbas,et al.  Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures. , 2013, Angewandte Chemie.

[51]  I. Aprahamian,et al.  Hydrazone Switch-Based Negative Feedback Loop. , 2016, Journal of the American Chemical Society.

[52]  N. Abbott,et al.  Design of Chemoresponsive Liquid Crystals through Integration of Computational Chemistry and Experimental Studies , 2017 .

[53]  T. Bunning,et al.  Photochemically and Thermally Driven Full-Color Reflection in a Self-Organized Helical Superstructure Enabled by a Halogen-Bonded Chiral Molecular Switch. , 2018, Angewandte Chemie.

[54]  B. K. Juluri,et al.  A mechanical actuator driven electrochemically by artificial molecular muscles. , 2009, ACS nano.

[55]  N. Abbott,et al.  Surface-Driven Switching of Liquid Crystals Using Redox-Active Groups on Electrodes , 2003, Science.

[56]  M. Irie,et al.  Photoswitching of Helical Twisting Power of a Chiral Diarylethene Dopant: Pitch Change in a Chiral Nematic Liquid Crystal , 2000 .

[57]  T. White,et al.  Light-induced liquid crystallinity , 2012, Nature.

[58]  G. R. Luckhurst,et al.  The Molecular physics of liquid crystals , 1979 .

[59]  William R. Dichtel,et al.  A liquid-crystalline bistable [2]rotaxane. , 2007, Angewandte Chemie.

[60]  T. Bunning,et al.  Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene , 2017 .

[61]  M. Irie,et al.  Photoinduced pitch changes in chiral nematic liquid crystals formed by doping with chiral diarylethene , 2001 .

[62]  Yan Wang,et al.  Light‐Driven Chiral Molecular Switches or Motors in Liquid Crystals , 2012, Advanced materials.

[63]  C. Ohm,et al.  Liquid Crystalline Elastomers as Actuators and Sensors , 2010, Advanced materials.

[64]  Ling Wang,et al.  Stimuli‐Directing Self‐Organized 3D Liquid‐Crystalline Nanostructures: From Materials Design to Photonic Applications , 2016 .

[65]  Ivan Aprahamian,et al.  A switching cascade of hydrazone-based rotary switches through coordination-coupled proton relays , 2012, Nature Chemistry.

[66]  Euan R Kay,et al.  Rise of the Molecular Machines , 2015, Angewandte Chemie.

[67]  T. White,et al.  Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning. , 2010, Chemical communications.

[68]  T. White,et al.  Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. , 2015, Nature materials.

[69]  N. Katsonis,et al.  Long-Lived Supramolecular Helices Promoted by Fluorinated Photoswitches. , 2018, Macromolecular rapid communications.

[70]  Jared D. Harris,et al.  New molecular switch architectures , 2018, Proceedings of the National Academy of Sciences.

[71]  T. Ikeda,et al.  Photomobile polymer materials: towards light-driven plastic motors. , 2008, Angewandte Chemie.

[72]  M. Irie,et al.  Phase Transition of a Liquid Crystal Induced by Chiral Photochromic Dopants , 2000 .

[73]  T. Bunning,et al.  Stimuli‐Driven Control of the Helical Axis of Self‐Organized Soft Helical Superstructures , 2018, Advanced materials.

[74]  R. Astumian,et al.  Driving and controlling molecular surface rotors with a terahertz electric field. , 2012, ACS nano.

[75]  P. Ryan,et al.  Cholesteric Liquid Crystal Shells as Enabling Material for Information‐Rich Design and Architecture , 2018, Advanced materials.

[76]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[77]  Nathalie Katsonis,et al.  Synthetic light-activated molecular switches and motors on surfaces , 2007 .

[78]  Takashi Kato,et al.  An electrochromic nanostructured liquid crystal consisting of pi-conjugated and ionic moieties. , 2008, Journal of the American Chemical Society.

[79]  H. Bisoyi,et al.  Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications. , 2016, Chemical reviews.

[80]  J. F. Stoddart,et al.  The chemistry of the mechanical bond. , 2009, Chemical Society reviews.

[81]  Yuna Kim,et al.  Asymmetric Dimers of Chiral Azobenzene Dopants Exhibiting Unusual Helical Twisting Power upon Photoswitching in Cholesteric Liquid Crystals. , 2016, ACS applied materials & interfaces.

[82]  Hao Wang,et al.  Rationally designed axially chiral diarylethene switches with high helical twisting power. , 2014, Chemistry.

[83]  Kunihiro Ichimura,et al.  Photoalignment of Liquid-Crystal Systems. , 2000, Chemical reviews.

[84]  Tomiki Ikeda,et al.  Photomodulation of liquid crystal orientations for photonic applications , 2003 .

[85]  Q. Pei,et al.  Electronic Muscles and Skins: A Review of Soft Sensors and Actuators. , 2017, Chemical reviews.

[86]  T. Yamaguchi,et al.  Photoswitching of Helical Twisting Power by Chiral Diarylethene Dopants , 2001 .

[87]  T. Bunning,et al.  Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light , 2016, Nature.