The abstract domain of Trapezoid Step Functions

The Trapezoid Step Functions (TSF) domain is introduced in order to approximate continuous functions by a finite sequence of trapezoids, adopting linear functions to abstract the upper and the lower bounds of a continuous variable in each time slot. The lattice structure of TSFis studied, showing how to build and compute a sound abstraction of a given continuous function. Experimental results underline the effectiveness of the approach in terms of both precision and efficiency with respect to the domain of Interval Valued Step Functions (IVSF). HighlightsThe domain of Trapezoid Step Functions is introduced for the static analysis on continuous functions' values.The domain is a (proper) refinement of the Interval Valued Step Function Domain.A constructive abstraction procedure is provided that deals with floating point precision issues.

[1]  Patrick Cousot,et al.  A static analyzer for large safety-critical software , 2003, PLDI.

[2]  O. Bouissou,et al.  GRKLib: a Guaranteed Runge Kutta Library , 2006, 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006).

[3]  Sumit Gulwani,et al.  Continuity analysis of programs , 2010, POPL '10.

[4]  Nicolas Halbwachs,et al.  Automatic discovery of linear restraints among variables of a program , 1978, POPL.

[5]  Elvira Albert,et al.  Cost Analysis of Java Bytecode , 2007, ESOP.

[6]  Agostino Cortesi,et al.  A suite of abstract domains for static analysis of string values , 2015, Softw. Pract. Exp..

[7]  M HillPatricia,et al.  Weakly-relational shapes for numeric abstractions , 2009 .

[8]  Benjamin C. Pierce,et al.  Distance makes the types grow stronger: a calculus for differential privacy , 2010, ICFP '10.

[9]  Dick Hamlet,et al.  Continuity in sofware systems. , 2002 .

[10]  Roberto Bagnara,et al.  Weakly-relational shapes for numeric abstractions: improved algorithms and proofs of correctness , 2009, Formal Methods Syst. Des..

[11]  Antoine Miné,et al.  The octagon abstract domain , 2001, High. Order Symb. Comput..

[12]  Ivan Tomek,et al.  Two Algorithms for Piecewise-Linear Continuous Approximation of Functions of One Variable , 1974, IEEE Transactions on Computers.

[13]  Abbas Edalat,et al.  Domain theory and differential calculus (functions of one variable) , 2004, Math. Struct. Comput. Sci..

[14]  Patrick Cousot,et al.  Systematic design of program analysis frameworks , 1979, POPL.

[15]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[16]  L. Chua,et al.  A generalized canonical piecewise-linear representation , 1990 .

[17]  Gengdong Cheng,et al.  OPTIMAL BOUNDING OF CURVES BY CONTINUOUS PIECEWISE LINEAR FUNCTIONS , 1993 .

[18]  Matthieu Martel,et al.  Abstract Interpretation of the Physical Inputs of Embedded Programs , 2008, VMCAI.

[19]  Agostino Cortesi,et al.  Linear Approximation of Continuous Systems with Trapezoid Step Functions , 2012, APLAS.

[20]  Sumit Gulwani,et al.  Proving programs robust , 2011, ESEC/FSE '11.

[21]  Hiroshi Imai,et al.  An optimal algorithm for approximating a piecewise linear function , 1986 .

[22]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[23]  Agostino Cortesi,et al.  Widening and narrowing operators for abstract interpretation , 2011, Comput. Lang. Syst. Struct..

[24]  Matthieu Martel,et al.  Some future challenges in the validation of control systems , 2006 .

[25]  Alberto Bressan,et al.  Directionally continuous selection in Banach spaces , 1989 .

[26]  Jérôme Feret,et al.  Static Analysis of Digital Filters , 2004, ESOP.

[27]  Agostino Cortesi Widening Operators for Abstract Interpretation , 2008, 2008 Sixth IEEE International Conference on Software Engineering and Formal Methods.

[28]  Nicolas Halbwachs,et al.  Verification of Linear Hybrid Systems by Means of Convex Approximations , 1994, SAS.

[29]  Dick Hamlet,et al.  Continuity in software systems , 2002, ISSTA '02.

[30]  Thomas A. Henzinger,et al.  A Note on Abstract Interpretation Strategies for Hybrid Automata , 1994, Hybrid Systems.

[31]  Caterina Urban,et al.  The Abstract Domain of Segmented Ranking Functions , 2013, SAS.

[32]  Sung Mo Kang,et al.  Section-wise piecewise-linear functions: Canonical representation, properties, and applications , 1977, Proceedings of the IEEE.

[33]  Eric Goubault,et al.  HybridFluctuat: A Static Analyzer of Numerical Programs within a Continuous Environment , 2009, CAV.