Sequences of dilations and translations equivalent to the Haar system in Lp-spaces

Let $f=\sum_{k=0}^{\infty}c_kh_{2^k}$, where $\{h_n\}$ is the classical Haar system, $c_k\in\mathbb{C}$. Given a $p\in (1,\infty)$, we find the sharp conditions, under which the sequence $\{f_n\}_{n=1}^\infty$ of dilations and translations of $f$ is a basis in the space $L^p[0,1]$, equivalent to $\{h_n\}_{n=1}^\infty$. The results obtained depend substantially on whether $p\ge 2$ or $1<p<2$ and include as the endpoints of the $L_p$-scale the spaces $BMO_d$ and $H_d^1$. The proofs are based on an appropriate splitting the set of positive integers $\mathbb{N}=\cup_{d=1}^\infty N_d$ so that the equivalence of $\{f_n\}_{n=1}^\infty$ to the Haar system in $L_p$ would be ensured by the fact that $\{f_n\}_{n\in N_d}$ is a basis in the subspace $[h_{m},m\in N_d]_{L_p}$, equivalent to the Haar subsequence $\{h_n\}_{n\in N_d}$ for every $d=1,2,\dots$.

[1]  I. É. Verbitskii Multipliers of spaceslAp , 1980 .

[2]  I. Novikov,et al.  Haar Series and Linear Operators , 1997 .

[3]  L. Tzafriri Chapter 38 - Uniqueness of Structure in Banach Spaces , 2003 .

[4]  On subsequences of the Haar system inLp [0, 1], (1 , 1973 .

[5]  Interpolation of Linear Operators , 2002 .

[6]  G. Schechtman,et al.  Symmetric Structures in Banach Spaces , 1979 .

[7]  P. Halmos A Hilbert Space Problem Book , 1967 .

[8]  V. I. Filippov,et al.  Representation in Lp by Series of Translates and Dilates of One Function , 1995 .

[9]  P. Terekhin,et al.  Sequences of dilations and translations in function spaces , 2018 .

[10]  P. Terekhin,et al.  Representing Systems of Dilations and Translations in Symmetric Function Spaces , 2020 .

[11]  J. Kahane Séries de Fourier absolument convergentes , 1970 .

[12]  P. A. Terekhin,et al.  Basis properties of affine Walsh systems in symmetric spaces , 2018, Izvestiya: Mathematics.

[13]  P. L. Ul'yanov REPRESENTATION OF FUNCTIONS BY SERIES AND CLASSES ϕ(L) , 1972 .

[14]  ON SYSTEMS OF FUNCTIONS WHOSE SERIES REPRESENT ARBITRARY MEASURABLE FUNCTIONS , 1968 .

[15]  E. M. Nikishin Series of a system {ϕ (nx)} , 1969 .

[16]  E. C. Titchmarsh On Conjugate Functions , 1929 .

[17]  E. M. Semenov,et al.  Spaces defined by the Paley function , 2013 .

[18]  F. John,et al.  On functions of bounded mean oscillation , 1961 .

[19]  P. A. Terekhin,et al.  Affine Walsh-type systems of functions in symmetric spaces , 2018 .

[20]  P. Halmos Shifts on Hilbert spaces. , 1961 .

[21]  P. Terekhin Affine Riesz bases and the dual function , 2016 .

[22]  P. Terekhin Multishifts in Hilbert spaces , 2005 .

[23]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .