Sequences of dilations and translations equivalent to the Haar system in Lp-spaces
暂无分享,去创建一个
[1] I. É. Verbitskii. Multipliers of spaceslAp , 1980 .
[2] I. Novikov,et al. Haar Series and Linear Operators , 1997 .
[3] L. Tzafriri. Chapter 38 - Uniqueness of Structure in Banach Spaces , 2003 .
[4] On subsequences of the Haar system inLp [0, 1], (1 , 1973 .
[5] Interpolation of Linear Operators , 2002 .
[6] G. Schechtman,et al. Symmetric Structures in Banach Spaces , 1979 .
[7] P. Halmos. A Hilbert Space Problem Book , 1967 .
[8] V. I. Filippov,et al. Representation in Lp by Series of Translates and Dilates of One Function , 1995 .
[9] P. Terekhin,et al. Sequences of dilations and translations in function spaces , 2018 .
[10] P. Terekhin,et al. Representing Systems of Dilations and Translations in Symmetric Function Spaces , 2020 .
[11] J. Kahane. Séries de Fourier absolument convergentes , 1970 .
[12] P. A. Terekhin,et al. Basis properties of affine Walsh systems in symmetric spaces , 2018, Izvestiya: Mathematics.
[13] P. L. Ul'yanov. REPRESENTATION OF FUNCTIONS BY SERIES AND CLASSES ϕ(L) , 1972 .
[14] ON SYSTEMS OF FUNCTIONS WHOSE SERIES REPRESENT ARBITRARY MEASURABLE FUNCTIONS , 1968 .
[15] E. M. Nikishin. Series of a system {ϕ (nx)} , 1969 .
[16] E. C. Titchmarsh. On Conjugate Functions , 1929 .
[17] E. M. Semenov,et al. Spaces defined by the Paley function , 2013 .
[18] F. John,et al. On functions of bounded mean oscillation , 1961 .
[19] P. A. Terekhin,et al. Affine Walsh-type systems of functions in symmetric spaces , 2018 .
[20] P. Halmos. Shifts on Hilbert spaces. , 1961 .
[21] P. Terekhin. Affine Riesz bases and the dual function , 2016 .
[22] P. Terekhin. Multishifts in Hilbert spaces , 2005 .
[23] Joram Lindenstrauss,et al. Classical Banach spaces , 1973 .