Photonic polarization gears for ultra-sensitive angular measurements

Quantum metrology bears a great promise in enhancing measurement precision, but is unlikely to become practical in the near future. Its concepts can nevertheless inspire classical or hybrid methods of immediate value. Here we demonstrate NOON-like photonic states of m quanta of angular momentum up to m=100, in a setup that acts as a ‘photonic gear’, converting, for each photon, a mechanical rotation of an angle θ into an amplified rotation of the optical polarization by mθ, corresponding to a ‘super-resolving’ Malus’ law. We show that this effect leads to single-photon angular measurements with the same precision of polarization-only quantum strategies with m photons, but robust to photon losses. Moreover, we combine the gear effect with the quantum enhancement due to entanglement, thus exploiting the advantages of both approaches. The high ‘gear ratio’ m boosts the current state of the art of optical non-contact angular measurements by almost two orders of magnitude.

[1]  V. D'Ambrosio,et al.  Complete experimental toolbox for alignment-free quantum communication , 2012, Nature Communications.

[2]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[3]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[4]  Robert W. Boyd,et al.  Supersensitive measurement of angular displacements using entangled photons , 2011 .

[5]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[6]  Fabio Sciarrino,et al.  Experimental observation of impossible-to-beat quantum advantage on a hybrid photonic system. , 2012, Physical review letters.

[7]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[8]  Stefano Olivares,et al.  Bayesian estimation of one-parameter qubit gates , 2008, 0812.0923.

[9]  M. Padgett,et al.  Advances in optical angular momentum , 2008 .

[10]  Ebrahim Karimi,et al.  Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications , 2011 .

[11]  Fabio Sciarrino,et al.  Experimental Implementation of a Kochen-Specker Set of Quantum Tests , 2012, 1209.1836.

[12]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[13]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[14]  A Smerzi,et al.  Phase detection at the quantum limit with multiphoton Mach-Zehnder interferometry. , 2007, Physical review letters.

[15]  Augusto Smerzi,et al.  Useful multiparticle entanglement and sub-shot-noise sensitivity in experimental phase estimation. , 2011, Physical review letters.

[16]  Jian-Wei Pan,et al.  De Broglie wavelength of a non-local four-photon state , 2003, Nature.

[17]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[18]  Vadim N. Smelyanskiy,et al.  Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.

[19]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[20]  Robert Fickler,et al.  Quantum Entanglement of High Angular Momenta , 2012, Science.

[21]  Pierre Cladé,et al.  Quantized rotation of atoms from photons with orbital angular momentum. , 2006, Physical review letters.

[22]  Duncan A. Robertson,et al.  Measurement of the Rotational Frequency Shift Imparted to a Rotating Light Beam Possessing Orbital Angular Momentum , 1998 .

[23]  M Ritsch-Marte,et al.  Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. , 2009, Optics express.

[24]  Nicolò Spagnolo,et al.  Phase estimation via quantum interferometry for noisy detectors. , 2011, Physical review letters.

[25]  A. S. Holevo,et al.  Covariant measurements and imprimitivity systems , 1984 .

[26]  Changxi Yang,et al.  Compact optical roll-angle sensor with large measurement range and high sensitivity. , 2005, Optics letters.

[27]  Jan Kolodynski,et al.  Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.

[28]  C. F. Roos,et al.  ‘Designer atoms’ for quantum metrology , 2006, Nature.

[29]  Y. Silberberg,et al.  High-NOON States by Mixing Quantum and Classical Light , 2010, Science.

[30]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[31]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[32]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[33]  Hong Jiang,et al.  Roll angle interferometer by means of wave plates , 2003 .

[34]  Hoi Sing Kwok,et al.  Photoalignment of Liquid Crystalline Materials , 2008 .

[35]  Jonathan A. Jones,et al.  Magnetic Field Sensing Beyond the Standard Quantum Limit Using 10-Spin NOON States , 2008, Science.

[36]  O. Barndorff-Nielsen,et al.  Fisher information in quantum statistics , 1998, quant-ph/9808009.

[37]  Hoi Sing Kwok,et al.  Photoalignment of Liquid Crystalline Materials: Physics and Applications , 2008 .

[38]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[39]  L. Marrucci,et al.  Polarization pattern of vector vortex beams generated by q-plates with different topological charges. , 2012, Applied optics.

[40]  Enrico Santamato,et al.  Tunable liquid crystal q-plates with arbitrary topological charge. , 2011, Optics express.

[41]  Ebrahim Karimi,et al.  Quantum information transfer from spin to orbital angular momentum of photons. , 2008, Physical review letters.

[42]  Roberta Zambrini,et al.  Resolution in rotation measurements , 2005, quant-ph/0503224.