The Irreducible Subgroups of Exceptional Algebraic Groups

This paper is a contribution to the study of the subgroup structure of exceptional algebraic groups over algebraically closed fields of arbitrary characteristic. Following Serre, a closed subgroup of a semisimple algebraic group $G$ is called irreducible if it lies in no proper parabolic subgroup of $G$. In this paper we complete the classification of irreducible connected subgroups of exceptional algebraic groups, providing an explicit set of representatives for the conjugacy classes of such subgroups. Many consequences of this classification are also given. These include results concerning the representations of such subgroups on various $G$-modules: for example, the conjugacy classes of irreducible connected subgroups are determined by their composition factors on the adjoint module of $G$, with one exception. A result of Liebeck and Testerman shows that each irreducible connected subgroup $X$ of $G$ has only finitely many overgroups and hence the overgroups of $X$ form a lattice. We provide tables that give representatives of each conjugacy class of overgroups within this lattice structure. We use this to prove results concerning the subgroup structure of $G$: for example, when the characteristic is 2, there exists a maximal connected subgroup of $G$ containing a conjugate of every irreducible subgroup $A_1$ of $G$.

[1]  Gary M. Seitz,et al.  A survey of maximal subgroups of exceptional groups of Lie type , 2002 .

[2]  Alastair Litterick Finite Simple Subgroups of Exceptional Algebraic Groups , 2013 .

[3]  Abhinav Shrestha CLASSIFICATION OF FINITE SIMPLE GROUPS , 2010 .

[4]  Gary M. Seitz,et al.  Subgroups generated by root elements in groups of Lie type , 1994 .

[5]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[6]  M. Bate,et al.  A geometric approach to complete reducibility , 2004, math/0408109.

[7]  M. Liebeck,et al.  Simple Subgroups of Large Rank in Groups of Lie Type , 1996 .

[8]  P. B. Kleidman The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ8+(q) and of their automorphism groups , 1987 .

[9]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[10]  D. Testerman A construction of certain maximal subgroups of the algebraic groups E6 and F4 , 1989 .

[11]  Gary M. Seitz,et al.  The maximal subgroups of positive dimension in exceptional algebraic groups , 2004 .

[12]  E. Cline,et al.  Rational and generic cohomology , 1977 .

[13]  On unipotent algebraic G-groups and 1-cohomology , 2010, 1011.1183.

[14]  Frank Lübeck Small Degree Representations of Finite Chevalley Groups in Defining Characteristic , 2001, LMS J. Comput. Math..

[15]  Arjeh M. Cohen,et al.  The Local Maximal Subgroups of Exceptional Groups of Lie Type, Finite and Algebraic , 1992 .

[16]  M. Bate,et al.  Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras , 2009, 0905.0065.

[17]  R. Carter,et al.  Conjugacy classes in the Weyl group , 1970 .

[18]  M. Liebeck,et al.  Factorizations of simple algebraic groups , 1996 .

[19]  J. Rotman An Introduction to Homological Algebra , 1979 .

[20]  R. Guralnick Small Representations Are Completely Reducible , 1999 .

[21]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[22]  J. Jantzen Representations of algebraic groups , 1987 .

[23]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[24]  M. Liebeck,et al.  Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras , 2012 .

[25]  Ong Hua King The subgroup structure of the classical groups , 1989 .

[26]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[27]  G. Seitz,et al.  On the structure of parabolic subgroups , 1990 .

[28]  Gary M. Seitz,et al.  On the subgroup structure of exceptional groups of Lie type , 1998 .

[29]  E. B. Dynkin,et al.  Semisimple subalgebras of semisimple Lie algebras , 1957 .

[30]  David I. Stewart The Reductive Subgroups of F4 , 2013 .

[31]  S. Donkin On tilting modules for algebraic groups , 1993 .

[32]  G. Seitz Maximal subgroups of exceptional algebraic groups , 1991 .

[33]  M. Liebeck,et al.  Reductive subgroups of exceptional algebraic groups , 1996 .

[34]  R. James Milgram,et al.  Finite Groups of Lie Type , 1994 .

[35]  A. Borel,et al.  Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I , 1971 .

[36]  C. Curtis,et al.  Representation theory of finite groups and associated algebras , 1962 .

[37]  G. Seitz The maximal subgroups of classical algebraic groups , 1987 .

[38]  P. Caprace Abstract Homomorphisms of Split Kac-moody Groups , 2009 .

[39]  David I. Stewart The Second Cohomology of Simple SL 3-Modules , 2009, 0907.4626.

[40]  GJ McNinch Dimensional Criteria for Semisimplicity of Representations , 1998 .

[41]  Robert Steinberg,et al.  Lectures on Chevalley Groups , 2016 .

[42]  Gary M. Seitz,et al.  On finite subgroups of exceptional algebraic groups , 1999 .