Unrealistically pristine air in the Arctic produced by current global scale models

[1]  Tsuyoshi Yamaura,et al.  Resolution dependence of deep convections in a global simulation from over 10-kilometer to sub-kilometer grid spacing , 2016, Progress in Earth and Planetary Science.

[2]  G. Janssens‑Maenhout,et al.  “ HTAP _ v 2 : a mosaic of regional and global emission gridmaps for 2008 and 2010 to study hemispheric transport of air pollution , 2015 .

[3]  S. Ghan,et al.  Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model , 2015 .

[4]  J. Christensen,et al.  Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set , 2015 .

[5]  Tsuyoshi Yamaura,et al.  Does convection vary in different cloud disturbances? , 2015 .

[6]  D. Jacob,et al.  Arctic Air Pollution : New Insights from POLARCAT-IPY , 2014 .

[7]  S. Ghan,et al.  Using an explicit emission tagging method in global modeling of source‐receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways , 2014 .

[8]  M. Chin,et al.  Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations , 2014 .

[9]  Takemasa Miyoshi,et al.  The Non-hydrostatic Icosahedral Atmospheric Model: description and development , 2014, Progress in Earth and Planetary Science.

[10]  Michael Schulz,et al.  Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis and comparison with remote sensing data , 2014 .

[11]  S. Ghan,et al.  Assessing the CAM5 physics suite in the WRF-Chem model: implementation, resolution sensitivity, and a first evaluation for a regional case study , 2014 .

[12]  W. Landuyt,et al.  The vertical distribution of black carbon in CMIP5 models: Comparison to observations and the importance of convective transport , 2014 .

[13]  Chien Wang,et al.  Estimating global black carbon emissions using a top‐down Kalman Filter approach , 2014 .

[14]  M. Sugiyama,et al.  Eastward-Propagating Intraseasonal Oscillation Represented by Chikira–Sugiyama Cumulus Parameterization. Part I: Comparison with Observation and Reanalysis , 2013 .

[15]  D. Fahey,et al.  Global-scale seasonally resolved black carbon vertical profiles over the Pacific , 2013, Geophysical research letters.

[16]  H. Yashiro,et al.  Deep moist atmospheric convection in a subkilometer global simulation , 2013 .

[17]  J. Randerson,et al.  Global Fire Emissions Database, Version 3.1 , 2013 .

[18]  Kaarle Kupiainen,et al.  Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions , 2013 .

[19]  Steven Platnick,et al.  Vertical Photon Transport in Cloud Remote Sensing Problems , 2013 .

[20]  B. DeAngelo,et al.  Bounding the role of black carbon in the climate system: A scientific assessment , 2013 .

[21]  S. Ghan,et al.  Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model , 2013 .

[22]  Hitoshi Matsui,et al.  Development and validation of a black carbon mixing state resolved three‐dimensional model: Aging processes and radiative impact , 2013 .

[23]  T. Nakajima,et al.  Impact of the aging process of black carbon aerosols on their spatial distribution, hygroscopicity, and radiative forcing in a global climate model , 2012 .

[24]  M. Satoh,et al.  An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators , 2012 .

[25]  O. Boucher,et al.  The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol , 2012 .

[26]  A. Arneth,et al.  The Impact of Black Carbon on Arctic Climate (2011). , 2011 .

[27]  Y. Q. Wang,et al.  Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols , 2011 .

[28]  P. Novelli,et al.  The role of scavenging in the seasonal transport of black carbon and sulfate to the Arctic , 2011 .

[29]  S. Wofsy,et al.  HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  L. Horowitz,et al.  Evaluation of factors controlling long‐range transport of black carbon to the Arctic , 2010 .

[31]  P. Pilewskie,et al.  Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project , 2010 .

[32]  A. Stohl,et al.  Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions , 2010 .

[33]  S. Gong,et al.  Importance of deposition processes in simulating the seasonality of the Arctic black carbon aerosol , 2010 .

[34]  Shao-Meng Li,et al.  A three-dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP, April 2009 , 2010 .

[35]  Glenn E. Shaw,et al.  The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results , 2010 .

[36]  Takashi Nakajima,et al.  Droplet Growth in Warm Water Clouds Observed by the A-Train. Part I: Sensitivity Analysis of the MODIS-Derived Cloud Droplet Sizes , 2010 .

[37]  W. Landman Climate change 2007: the physical science basis , 2010 .

[38]  M. Chin,et al.  Evaluation of black carbon estimations in global aerosol models , 2009 .

[39]  Matthias Karl,et al.  Sources of uncertainties in modelling black carbon at the global scale , 2009 .

[40]  Teruyuki Nakajima,et al.  Near-Global Scale Retrieval of the Optical and Microphysical Properties of Clouds from Midori-II GLI and AMSR Data , 2009 .

[41]  Hirofumi Tomita,et al.  New Microphysical Schemes with Five and Six Categories by Diagnostic Generation of Cloud Ice , 2008 .

[42]  Teruyuki Nakajima,et al.  A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model , 2008 .

[43]  T. Takemura,et al.  Global cloud‐system‐resolving simulation of aerosol effect on warm clouds , 2008 .

[44]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[45]  J. Dines Life cycle of cyclones and the polar front theory of atmospheric circulation. By J. Bjerknes and H. Solberg. Kristiania, Geophysisks Publikationer, 3, 1922, No. 1. Pp. 18. 4°. Price 2 kr , 2007 .

[46]  A. Stohl,et al.  Arctic Air Pollution: Origins and Impacts , 2007, Science.

[47]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[48]  A. Stohl Characteristics of atmospheric transport into the Arctic troposphere , 2006 .

[49]  H. Niino,et al.  An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog , 2006 .

[50]  S. Emori,et al.  Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model , 2005 .

[51]  E. Maloney,et al.  Surface Fluxes and Ocean Coupling in the Tropical Intraseasonal Oscillation , 2004 .

[52]  Hirofumi Tomita,et al.  A new dynamical framework of nonhydrostatic global model using the icosahedral grid , 2004 .

[53]  Kumiko Takata,et al.  Development of the minimal advanced treatments of surface interaction and runoff , 2003 .

[54]  P. Hess,et al.  Seasonal changes in the transport of pollutants into the Arctic troposphere‐model study , 2003 .

[55]  K. Sudo,et al.  CHASER: A global chemical model of the troposphere 2. Model results and evaluation , 2002 .

[56]  K. Sudo,et al.  CHASER: A global chemical model of the troposphere 1. Model description , 2002 .

[57]  Teruyuki Nakajima,et al.  A Global Determination of Cloud Microphysics with AVHRR Remote Sensing , 2001 .

[58]  V. Ramanathan,et al.  Reduction of tropical cloudiness by soot , 2000, Science.

[59]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[60]  T. Nakajima,et al.  Wide-Area Determination of Cloud Microphysical Properties from NOAA AVHRR Measurements for FIRE and ASTEX Regions , 1995 .

[61]  S. Emori,et al.  A simple extension of the Louis method for rough surface layer modelling , 1995 .

[62]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[63]  A. Lacis,et al.  Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data. , 1994 .

[64]  W. Malm,et al.  Spatial and seasonal trends in particle concentration and optical extinction in the United States , 1994 .

[65]  M. Tiedtke,et al.  Representation of Clouds in Large-Scale Models , 1993 .

[66]  A. Hansen,et al.  Vertical distributions of particulate carbon, sulfur, and bromine in the Arctic haze and comparison with ground‐level measurements at Barrow, Alaska , 1984 .

[67]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[68]  P. Squires,et al.  The Microstructure and Colloidal Stability of Warm Clouds , 1958 .

[69]  P. L. C. N. O. Elli,et al.  Assessing the relative contributions of transport efficiency and scavenging to seasonal variability in Arctic aerosol , 2010 .

[70]  L. Barrie,et al.  Arctic air pollution: An overview of current knowledge , 1986 .