Plasmonic Lenses: A Review

Four types of plasmonic lenses for the purpose of superfocusing designed on the bases of approximate negative refractive index concept, subwavelength metallic structures, waveguide mode were introduced, and curved chains of nanoparticles, respectively, were introduced. Imaging mechanism, fabrication, and characterization issues were presented. Theoretical analyses of the illumination with different polarization states on focusing performance of the plasmonic lenses were given also. In addition, a hybrid Au-Ag plasmonic lens with chirped slits for the purpose of avoiding oxidation of Ag film was presented.

[1]  M. Mansuripur,et al.  Transmission of light through slit apertures in metallic films , 2004, IEEE Transactions on Magnetics.

[2]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[3]  Shaoli Zhu,et al.  Ultra-Enhanced Lasing Effect of Plasmonic Lens Structured with Elliptical Nanopinholes Distributed in Variant Periods , 2010 .

[4]  Polarization Effect on Superfocusing of a Plasmonic Lens Structured with Radialized and Chirped Elliptical Nanopinholes , 2010 .

[5]  Yuan Wang,et al.  Resonant and non-resonant generation and focusing of surface plasmons with circular gratings. , 2006, Optics express.

[6]  L. Lim,et al.  Near-field behavior of zone-plate-like plasmonic nanostructures. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  Eloïse Devaux,et al.  Wavelength selective nanophotonic components utilizing channel plasmon polaritons. , 2007, Nano letters.

[8]  Y. Wang,et al.  Flying plasmonic lens in the near field for high-speed nanolithography. , 2008, Nature nanotechnology.

[9]  Nicholas X. Fang,et al.  Imaging properties of a metamaterial superlens , 2003 .

[10]  Uriel Levy,et al.  Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. , 2009, Nano letters.

[11]  L. Verslegers,et al.  Planar lenses based on nanoscale slit arrays in a metallic film , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[12]  Xing Zhu,et al.  Planar plasmonic focusing and optical transport using CdS nanoribbon. , 2010, ACS nano.

[13]  Alexandra Boltasseva,et al.  Surface plasmon polariton beam focusing with parabolic nanoparticle chains. , 2007, Optics express.

[14]  C. Wang,et al.  Transmission and reflection navigated optical probe with depth-tuned surface corrugations , 2006 .

[15]  S. Kawata,et al.  Subwavelength optical imaging through a metallic nanorod array. , 2005, Physical review letters.

[16]  Xiang Zhang,et al.  Regenerating evanescent waves from a silver superlens. , 2003, Optics express.

[17]  Motoichi Ohtsu,et al.  Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion , 2005 .

[18]  Costas D. Sarris,et al.  Metallic transmission screen for sub-wavelength focusing , 2007 .

[19]  Yu Liu,et al.  Influence of V-Shaped Metallic Subwavelength Slits with Variant Periods for Superfocusing , 2010 .

[20]  Hyungduk Ko,et al.  Light transmission through a metallic/dielectric nano-optic lens , 2008 .

[21]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[22]  Changtao Wang,et al.  Beam manipulating by metallic nano-slits with variant widths. , 2005, Optics express.

[23]  Chunlei Du,et al.  Focal length modulation based on a metallic slit surrounded with grooves in curved depths , 2007 .

[24]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[25]  S. Ramakrishna,et al.  Physics of negative refractive index materials , 2005 .

[26]  Yi Xiong,et al.  Far-field optical superlens. , 2007, Nano letters.

[27]  Yunlong Sheng,et al.  Optical surface waves over metallo-dielectric nanostructures: Sommerfeld integrals revisited. , 2008, Optics express.

[28]  J. Pearson,et al.  Subwavelength focusing and guiding of surface plasmons. , 2005, Nano letters.

[29]  Zhijun Sun,et al.  Refractive transmission of light and beam shaping with metallic nano-optic lenses , 2004 .

[30]  L. Lim,et al.  Plasmonic microzone plate: Superfocusing at visible regime , 2007 .

[31]  C. Du,et al.  Influence of V-shaped plasmonic nanostructures on beam propagation , 2007 .

[32]  Chih-Kung Lee,et al.  Physical origin of directional beaming emitted from a subwavelength slit , 2005 .

[33]  Harald Ditlbacher,et al.  Two-dimensional optics with surface plasmon polaritons , 2002 .

[34]  Q. Zhan Cylindrical vector beams: from mathematical concepts to applications , 2009 .

[35]  B N Chichkov,et al.  Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles. , 2007, Optics express.

[36]  Huajian Gao,et al.  Tunable core size of carbon nanoscrolls , 2010 .

[37]  Y. Hao,et al.  Subwavelength microwave imaging using an array of parallel conducting wires as a lens , 2006 .

[38]  Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves , 2007 .

[39]  Francesco De Angelis,et al.  A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. , 2008, Nano letters.

[40]  Changtao Wang,et al.  Geometrical characterization issues of plasmonic nanostructures with depth-tuned grooves for beam shaping , 2006 .

[41]  Chunlei Du,et al.  Near-field visualization of focal depth modulation by step corrugated plasmonic slits , 2009 .

[42]  Ewold Verhagen,et al.  Nanofocusing in laterally tapered plasmonic waveguides. , 2008, Optics express.

[43]  Richard J. Blaikie,et al.  Submicron imaging with a planar silver lens , 2004 .

[44]  The role of short and long range surface plasmons for plasmonic focusing applications. , 2009, Optics express.

[45]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[46]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[47]  A. Dereux,et al.  Efficient unidirectional nanoslit couplers for surface plasmons , 2007, cond-mat/0703407.

[48]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[49]  Xiang Zhang,et al.  Tuning the focus of a plasmonic lens by the incident angle , 2006 .

[50]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[51]  Effect of polarization on symmetry of focal spot of a plasmonic lens. , 2009, Optics express.

[52]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[53]  C. M. Lee,et al.  Magnetic-field dependence of low-lying spectra in magnetic quantum rings and dots , 2005 .

[54]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[55]  Wei Zhou,et al.  Hybrid Au-Ag subwavelength metallic structures with variant periods for superfocusing , 2009 .

[56]  Changtao Wang,et al.  Subwavelength imaging by metallic slab lens with nanoslits , 2007 .

[57]  Wentao Song,et al.  Focusing surface plasmon polariton trapping of colloidal particles , 2009 .

[58]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[59]  Zhaowei Liu,et al.  Focusing surface plasmons with a plasmonic lens. , 2005, Nano letters.

[60]  F. Fang,et al.  Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits. , 2010, Optics express.

[61]  Carsten Reinhardt,et al.  Rapid prototyping of optical components for surface plasmon polaritons. , 2007, Optics express.

[62]  Akihiro Inomata,et al.  Thermally assisted magnetic recording , 2006 .

[63]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[64]  Reuven Gordon,et al.  Increased cut-off wavelength for a subwavelength hole in a real metal. , 2005, Optics express.

[65]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.