Reliable Communication Under Channel Uncertainty

In many communication situations, the transmitter and the receiver must be designed without a complete knowledge of the probability law governing the channel over which transmission takes place. Various models for such channels and their corresponding capacities are surveyed. Special emphasis is placed on the encoders and decoders which enable reliable communication over these channels.

[1]  Vladimir B. Balakirsky Coding Theorem for Discrete Memoryless Channels with Given Decision Rule , 1991, Algebraic Coding.

[2]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[3]  R. Ahlswede Certain results in coding theory for compound channels , 1967 .

[4]  Imre Csiszár,et al.  The capacity of the arbitrarily varying channel revisited: Positivity, constraints , 1988, IEEE Trans. Inf. Theory.

[5]  Neri Merhav How many information bits does a decoder need about the channel statistics? , 1997, IEEE Trans. Inf. Theory.

[6]  Hans-Martin Wallmeier,et al.  Random coding bound and codes produced by permutations for the multiple-access channel , 1985, IEEE Trans. Inf. Theory.

[7]  J. Wolfowitz Coding Theorems of Information Theory , 1962, Ergebnisse der Mathematik und Ihrer Grenzgebiete.

[8]  R. McEliece,et al.  Some Information Theoretic Saddlepoints , 1985 .

[9]  Irvin G. Stiglitz,et al.  Coding for a class of unknown channels , 1966, IEEE Trans. Inf. Theory.

[10]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[11]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[12]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[13]  RUDOLF AHLSWEDE Arbitrarily varying channels with states sequence known to the sender , 1986, IEEE Trans. Inf. Theory.

[14]  Rudolf Ahlswede,et al.  Localized random and arbitrary errors in the light of arbitrarily varying channel theory , 1995, IEEE Trans. Inf. Theory.

[15]  Shlomo Shamai,et al.  On information rates for mismatched decoders , 1994, IEEE Trans. Inf. Theory.

[16]  Amos Lapidoth,et al.  Nearest neighbor decoding for additive non-Gaussian noise channels , 1996, IEEE Trans. Inf. Theory.

[17]  J. Ziv,et al.  Universal sequential decoding , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[18]  Abbas El Gamal,et al.  On the capacity of computer memory with defects , 1983, IEEE Trans. Inf. Theory.

[19]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .

[20]  Claude E. Shannon,et al.  Channels with Side Information at the Transmitter , 1958, IBM J. Res. Dev..

[21]  Toby Berger,et al.  Lossy Source Coding , 1998, IEEE Trans. Inf. Theory.

[22]  Toby Berger,et al.  The CEO problem [multiterminal source coding] , 1996, IEEE Trans. Inf. Theory.

[23]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[24]  Brian L. Hughes,et al.  Nonconvexity of the capacity region of the multiple-access arbitrarily varying channel subject to constraints , 1995, IEEE Trans. Inf. Theory.

[25]  Shlomo Shamai,et al.  Information-theoretic considerations for symmetric, cellular, multiple-access fading channels - Part II , 1997, IEEE Trans. Inf. Theory.

[26]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[27]  Emre Telatar,et al.  The Compound Channel Capacity of a Class of Finite-State Channels , 1998, IEEE Trans. Inf. Theory.

[28]  Meir Feder,et al.  Universal Decoding for Channels with Memory , 1998, IEEE Trans. Inf. Theory.

[29]  Emre Telatar Zero-error list capacities of discrete memoryless channels , 1997, IEEE Trans. Inf. Theory.

[30]  J. Wolfowitz Simultaneous channels , 1959 .

[31]  E. Gilbert Capacity of a burst-noise channel , 1960 .

[32]  Sergio Verdú,et al.  On channel capacity per unit cost , 1990, IEEE Trans. Inf. Theory.

[33]  J. Wolfowitz The coding of messages subject to chance errors , 1957 .

[34]  Vladimir B. Balakirsky A converse coding theorem for mismatched decoding at the output of binary-input memoryless channels , 1995, IEEE Trans. Inf. Theory.

[35]  G. David Forney,et al.  Exponential error bounds for erasure, list, and decision feedback schemes , 1968, IEEE Trans. Inf. Theory.

[36]  Robert G. Gallager,et al.  The random coding bound is tight for the average code (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[37]  Israel Bar-David,et al.  Capacity and coding for the Gilbert-Elliot channels , 1989, IEEE Trans. Inf. Theory.

[38]  Neri Merhav,et al.  Universal Prediction , 1998, IEEE Trans. Inf. Theory.

[39]  William L. Root,et al.  Estimates of Epsilon capacity for certain linear communication channels , 1968, IEEE Trans. Inf. Theory.

[40]  Peter Elias,et al.  Zero error capacity under list decoding , 1988, IEEE Trans. Inf. Theory.

[41]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[42]  Neri Merhav Universal decoding for memoryless Gaussian channels with a deterministic interference , 1993, IEEE Trans. Inf. Theory.

[43]  Elwyn R. Berlekamp,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. II , 1967, Inf. Control..

[44]  Prakash Narayan,et al.  The capacity of a vector Gaussian arbitrarily varying channel , 1988, IEEE Trans. Inf. Theory.

[45]  Aaron D. Wyner,et al.  Shannon-theoretic approach to a Gaussian cellular multiple-access channel , 1994, IEEE Trans. Inf. Theory.

[46]  R. Ahlswede A Note on the Existence of the Weak Capacity for Channels with Arbitrarily Varying Channel Probability Functions and Its Relation to Shannon's Zero Error Capacity , 1970 .

[47]  Peter Elias,et al.  List decoding for noisy channels , 1957 .

[48]  Imre Csiszár,et al.  Arbitrarily varying channels with general alphabets and states , 1992, IEEE Trans. Inf. Theory.

[49]  Imre Csisźar,et al.  The Method of Types , 1998, IEEE Trans. Inf. Theory.

[50]  John A. Gubner State constraints for the multiple-access arbitrarily varying channel , 1991, IEEE Trans. Inf. Theory.

[51]  Thomas H. E. Ericson,et al.  Exponential error bounds for random codes in the arbitrarily varying channel , 1985, IEEE Trans. Inf. Theory.

[52]  John A. Gubner On the deterministic-code capacity of the multiple-access arbitrarily varying channel , 1990, IEEE Trans. Inf. Theory.

[53]  Rudolf Ahlswede,et al.  Correlated Decoding for Channels with Arbitrarily Varying Channel Probability Functions , 1969, Inf. Control..

[54]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[55]  Shlomo Shamai,et al.  A broadcast strategy for the Gaussian slowly fading channel , 1997, Proceedings of IEEE International Symposium on Information Theory.

[56]  R. Ahlswede Elimination of correlation in random codes for arbitrarily varying channels , 1978 .

[57]  D. Blackwell,et al.  The Capacity of a Class of Channels , 1959 .

[58]  Rudolf Ahlswede,et al.  Multi-way communication channels , 1973 .

[59]  Prakash Narayan,et al.  Gaussian arbitrarily varying channels , 1987, IEEE Trans. Inf. Theory.

[60]  Aaron D. Wyner,et al.  On the Role of Pattern Matching in Information Theory , 1998, IEEE Trans. Inf. Theory.

[61]  Johann-Heinrich Jahn,et al.  Coding of arbitrarily varying multiuser channels , 1981, IEEE Trans. Inf. Theory.

[62]  Michael L. Honig,et al.  Bounds on s-rate for linear, time-invariant, multiinput/multioutput channels , 1990, IEEE Trans. Inf. Theory.

[63]  Frederick Jelinek,et al.  Indecomposable Channels with Side Information at the Transmitter , 1965, Inf. Control..

[64]  Rudolf Ahlswede,et al.  Common Randomness in Information Theory and Cryptography - Part II: CR Capacity , 1998, IEEE Trans. Inf. Theory.

[65]  Shlomo Shamai,et al.  Fading Channels: Information-Theoretic and Communication Aspects , 1998, IEEE Trans. Inf. Theory.

[66]  Imre Csiszár,et al.  Channel capacity for a given decoding metric , 1995, IEEE Trans. Inf. Theory.

[67]  Shlomo Shamai,et al.  Information theoretic considerations for cellular mobile radio , 1994 .

[68]  D. Blackwell,et al.  Proof of Shannon's Transmission Theorem for Finite-State Indecomposable Channels , 1958 .

[69]  Rudolf Ahlswede,et al.  Two proofs of Pinsker's conjecture concerning arbitrarily varying channels , 1991, IEEE Trans. Inf. Theory.

[70]  Imre Csiszár,et al.  Graph decomposition: A new key to coding theorems , 1981, IEEE Trans. Inf. Theory.

[71]  J. Wolfowitz,et al.  The capacity of a channel with arbitrarily varying channel probability functions and binary output alphabet , 1970 .

[72]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[73]  I. Csiszár,et al.  On the capacity of the arbitrarily varying channel for maximum probability of error , 1981 .

[74]  Imre Csiszár,et al.  Capacity of the Gaussian arbitrarily varying channel , 1991, IEEE Trans. Inf. Theory.

[75]  P. Varaiya,et al.  Capacity of Classes of Gaussian Channels , 1968 .

[76]  Rüdiger L. Urbanke,et al.  A rate-splitting approach to the Gaussian multiple-access channel , 1996, IEEE Trans. Inf. Theory.

[77]  Imre Csiszár Generalized cutoff rates and Renyi's information measures , 1995, IEEE Trans. Inf. Theory.

[78]  Rudolf Ahlswede The maximal error capacity of arbitrarily varying channels for constant list sizes , 1993, IEEE Trans. Inf. Theory.

[79]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[80]  A. Sridharan Broadcast Channels , 2022 .

[81]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[82]  Brian L. Hughes,et al.  A new universal random coding bound for the multiple-access channel , 1996, IEEE Trans. Inf. Theory.

[83]  Thomas H. E. Ericson A min-max theorem for antijamming group codes , 1984, IEEE Trans. Inf. Theory.

[84]  Ephraim Zehavi,et al.  Decoding under integer metrics constraints , 1995, IEEE Trans. Commun..

[85]  Nelson M. Blachman,et al.  The effect of statistically dependent interference upon channel capacity , 1962, IRE Trans. Inf. Theory.

[86]  N. Sloane,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. I , 1993 .

[87]  A. Lapidoth On the role of mismatch in rate distortion theory , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[88]  Rudolf Ahlswede,et al.  Coloring hypergraphs: A new approach to multi-user source coding, 1 , 1979 .

[89]  Claude E. Shannon,et al.  Certain Results in Coding Theory for Noisy Channels , 1957, Inf. Control..

[90]  R. Gallager ENERGY LIMITED CHANNELS : CODING , MULTIACCESS , AND SPREAD SPECTRUM * * ABSTRACT , 1987 .

[91]  Volodia Blinovsky,et al.  Estimation of the size of the list when decoding over an arbitrarily varying channel , 1993, Algebraic Coding.

[92]  E. O. Elliott Estimates of error rates for codes on burst-noise channels , 1963 .

[93]  Rudolf Ahlswede,et al.  Channel capacities for list codes , 1973, Journal of Applied Probability.

[94]  Brian L. Hughes The smallest list for the arbitrarily varying channel , 1997, IEEE Trans. Inf. Theory.

[95]  N. Blachman,et al.  On the capacity of a band-limited channel perturbed by statistically dependent interference , 1962, IRE Trans. Inf. Theory.

[96]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[97]  Jacob Wolfowitz,et al.  Multiple Access Channels , 1978 .

[98]  Hong Shen Wang,et al.  Finite-state Markov channel-a useful model for radio communication channels , 1995 .

[99]  Imre Csiszár,et al.  Capacity and decoding rules for classes of arbitrarily varying channels , 1989, IEEE Trans. Inf. Theory.

[100]  Imre Csiszár,et al.  Arbitrarily varying channels with constrained inputs and states , 1988, IEEE Trans. Inf. Theory.

[101]  Wayne E. Stark,et al.  On the capacity of channels with unknown interference , 1989, IEEE Trans. Inf. Theory.

[102]  Rudolf Ahlswede,et al.  Arbitrarily Varying Multiple-Access Channels - Part II - Correlated Senders' Side Information, Correlated Messages, and Ambiguous Transmission , 1997, IEEE Trans. Inf. Theory.

[103]  Jacob Ziv,et al.  Universal decoding for finite-state channels , 1985, IEEE Trans. Inf. Theory.

[104]  John A. Gubner On the capacity region of the discrete additive multiple-access arbitrarily varying channel , 1992, IEEE Trans. Inf. Theory.

[105]  Joseph Y. N. Hui,et al.  Fundamental issues of multiple accessing , 1983 .

[106]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[107]  Amos Lapidoth,et al.  Mismatched decoding and the multiple-access channel , 1994, IEEE Trans. Inf. Theory.

[108]  Amos Lapidoth,et al.  On the Universality of the LZ-Based Decoding Algorithm , 1998, IEEE Trans. Inf. Theory.

[109]  Rudolf Ahlswede,et al.  Arbitrarily Varying Multiple-Access Channels Part I - Ericson's Symmetrizability Is Adequate, Gubner's Conjecture Is True , 1997, IEEE Trans. Inf. Theory.

[110]  D. Blackwell,et al.  The Capacities of Certain Channel Classes Under Random Coding , 1960 .

[111]  A. Lapidoth On the role of mismatch in rate distortion theory , 1997, IEEE Trans. Inf. Theory.

[112]  Pravin Varaiya,et al.  Capacity, mutual information, and coding for finite-state Markov channels , 1996, IEEE Trans. Inf. Theory.

[113]  Rudolf Ahlswede,et al.  Correlated sources help transmission over an arbitrarily varying channel , 1997, IEEE Trans. Inf. Theory.

[114]  L. J. Forys,et al.  The epsilon-Capacity of Classes of Unknown Channels , 1969, Inf. Control..

[115]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .