A UNIFORM ASTEROSEISMIC ANALYSIS OF 22 SOLAR-TYPE STARS OBSERVED BY KEPLER

Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We perform a uniform analysis of 22 of the brightest asteroseismic targets with the highest signal-to-noise ratio observed for 1 month each during the first year of the mission, and we quantify the precision and relative accuracy of asteroseismic determinations of the stellar radius, mass, and age that are possible using various methods. We present the properties of each star in the sample derived from an automated analysis of the individual oscillation frequencies and other observational constraints using the Asteroseismic Modeling Portal (AMP), and we compare them to the results of model-grid-based methods that fit the global oscillation properties. We find that fitting the individual frequencies typically yields asteroseismic radii and masses to ~1% precision, and ages to ~2.5% precision (respectively, 2, 5, and 8 times better than fitting the global oscillation properties). The absolute level of agreement between the results from different approaches is also encouraging, with model-grid-based methods yielding slightly smaller estimates of the radius and mass and slightly older values for the stellar age relative to AMP, which computes a large number of dedicated models for each star. The sample of targets for which this type of analysis is possible will grow as longer data sets are obtained during the remainder of the mission.

[1]  Robert L. Kurucz,et al.  New Opacity Calculations , 1991 .

[2]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[3]  S. Mark Ammons,et al.  The N2K Consortium. IV. New Temperatures and Metallicities for More than 100,000 FGK Dwarfs , 2005, astro-ph/0510237.

[4]  P. Flower,et al.  Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections , 1996 .

[5]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[6]  T. Appourchaux,et al.  ASTEROSEISMIC FUNDAMENTAL PROPERTIES OF SOLAR-TYPE STARS OBSERVED BY THE NASA KEPLER MISSION , 2013, 1310.4001.

[7]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[8]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[9]  P. Gaulme,et al.  Asteroseismology from multi-month Kepler photometry: the evolved Sun-like stars KIC 10273246 and KIC 10920273 , 2011, 1108.3807.

[10]  David R. Alexander,et al.  Low-Temperature Rosseland Opacities , 1975 .

[11]  William J. Chaplin,et al.  DETERMINATION OF STELLAR RADII FROM ASTEROSEISMIC DATA , 2009, 0909.0506.

[12]  S. Jefferies,et al.  Modeling of solar oscillation power spectra , 1990 .

[13]  M. Martic,et al.  THE ASTEROSEISMIC POTENTIAL OF KEPLER: FIRST RESULTS FOR SOLAR-TYPE STARS , 2010, 1001.0506.

[14]  Forrest J. Rogers,et al.  Updated and Expanded OPAL Equation-of-State Tables: Implications for Helioseismology , 2002 .

[15]  M. Dupret,et al.  Convection-pulsation coupling - I. A mixing-length perturbative theory , 2005 .

[16]  Travis S. Metcalfe,et al.  CoRoT Reveals a Magnetic Activity Cycle in a Sun-Like Star , 2010, Science.

[17]  Benjamin Peirce,et al.  Criterion for the rejection of doubtful observations , 1852 .

[18]  P. Gaulme,et al.  CONSTRUCTING A ONE-SOLAR-MASS EVOLUTIONARY SEQUENCE USING ASTEROSEISMIC DATA FROM KEPLER , 2011, 1108.2031.

[19]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[20]  J. Christensen-Dalsgaard,et al.  A STELLAR MODEL-FITTING PIPELINE FOR ASTEROSEISMIC DATA FROM THE KEPLER MISSION , 2009, 0903.0616.

[21]  J. Christensen-Dalsgaard,et al.  AUTOMATIC DETERMINATION OF STELLAR PARAMETERS VIA ASTEROSEISMOLOGY OF STOCHASTICALLY OSCILLATING STARS: COMPARISON WITH DIRECT MEASUREMENTS , 2010, 1009.5131.

[22]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[23]  F. V. Leeuwen,et al.  Hipparcos, the New Reduction of the Raw Data , 2007 .

[24]  Conny Aerts,et al.  Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars , 2011, Nature.

[25]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[26]  T. Lingham‐Soliar,et al.  Origin and evolution , 2014 .

[27]  T. Appourchaux,et al.  RADIUS DETERMINATION OF SOLAR-TYPE STARS USING ASTEROSEISMOLOGY: WHAT TO EXPECT FROM THE KEPLER MISSION , 2009, 0906.0766.

[28]  S. Mathur,et al.  About the p-mode frequency shifts in HD 49933 , 2011, 1104.5654.

[29]  Hans Kjeldsen,et al.  CALCULATING ASTEROSEISMIC DIAGRAMS FOR SOLAR-LIKE OSCILLATIONS , 2011, 1109.3455.

[30]  R. Stein,et al.  THE MASS MIXING LENGTH IN CONVECTIVE STELLAR ENVELOPES , 2011, 1102.1102.

[31]  J. Pel,et al.  The High Road to Astronomical Photometric Precision: Differential Photometry , 2011 .

[32]  D. B. Guenther,et al.  YREC: the Yale rotating stellar evolution code , 2007, 0710.4003.

[33]  M. Rieutord,et al.  ON THE INTERPRETATION OF ECHELLE DIAGRAMS FOR SOLAR-LIKE OSCILLATIONS EFFECT OF CENTRIFUGAL DISTORTION , 2010, 1009.0123.

[34]  G. Torres ON THE USE OF EMPIRICAL BOLOMETRIC CORRECTIONS FOR STARS , 2010, 1008.3913.

[35]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[36]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[37]  S. Dreizler,et al.  A PRECISE ASTEROSEISMIC AGE AND RADIUS FOR THE EVOLVED SUN-LIKE STAR KIC 11026764 , 2010, 1010.4329.

[38]  T. Metcalfe,et al.  Stellar structure modeling using a parallel genetic algorithm for objective global optimization , 2002, astro-ph/0208315.

[39]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[40]  P. Gaulme,et al.  SOLAR-LIKE OSCILLATIONS IN KIC 11395018 AND KIC 11234888 FROM 8 MONTHS OF KEPLER DATA , 2011, 1103.4085.

[41]  David Tytler,et al.  ASTROPHYSICAL APPLICATIONS OF POWERFUL NEW DATABASES , 1995 .

[42]  P. Gaulme,et al.  ASTEROSEISMIC DIAGRAMS FROM A SURVEY OF SOLAR-LIKE OSCILLATIONS WITH KEPLER , 2011, 1110.1375.

[43]  Michael Thompson,et al.  On solar p-mode frequency shifts caused by near-surface model changes , 1997 .

[44]  Jørgen Christensen-Dalsgaard,et al.  ADIPLS—the Aarhus adiabatic oscillation package , 2007, 0710.3106.

[45]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[46]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[47]  P. Gaulme,et al.  Global asteroseismic properties of solar-like oscillations observed by Kepler: a comparison of complementary analysis methods , 2011, 1105.0571.

[48]  William J. Chaplin,et al.  AN IN-DEPTH STUDY OF GRID-BASED ASTEROSEISMIC ANALYSIS , 2010, 1009.3018.

[49]  P. Quirion,et al.  ASTEROSEISMIC INVESTIGATION OF KNOWN PLANET HOSTS IN THE KEPLER FIELD , 2009, 1001.0032.

[50]  Timothy M. Brown,et al.  Detection of possible p-mode oscillations on Procyon , 1991 .

[51]  Hans Kjeldsen,et al.  TO APPEAR IN APJ LETTERS Preprint typeset using LATEX style emulateapj v. 10/09/06 CORRECTING STELLAR OSCILLATION FREQUENCIES FOR NEAR-SURFACE EFFECTS , 2022 .

[52]  J. Ballot,et al.  Visibilities and bolometric corrections for stellar oscillation modes observed by Kepler , 2011, 1105.4557.

[53]  Timothy M. Brown,et al.  KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION , 2011, 1102.0342.

[54]  D. B. Guenther,et al.  Matching Stellar Models to Oscillation Data , 2004 .

[55]  Matthew Woitaszek,et al.  AMP: a science-driven web-based application for the TeraGrid , 2009, GCE '09.

[56]  Jong-Hak Woo,et al.  Y2 Isochrones with an Improved Core Overshoot Treatment , 2004 .

[57]  Jørgen Christensen-Dalsgaard,et al.  ASTEC—the Aarhus STellar Evolution Code , 2007, 0710.3114.

[58]  T. Campante,et al.  Bayesian peak-bagging of solar-like oscillators using MCMC: a comprehensive guide , 2010, 1101.0084.

[59]  D. Buzasi,et al.  ASTEROSEISMOLOGY OF RED GIANTS FROM THE FIRST FOUR MONTHS OF KEPLER DATA: GLOBAL OSCILLATION PARAMETERS FOR 800 STARS , 2010, 1010.4566.

[60]  P. Gaulme,et al.  Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385 , 2010, 1003.4368.

[61]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[62]  S. D. Kawaler,et al.  Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler Mission , 2011, Science.

[63]  P. Gaulme,et al.  HD 46375: seismic and spectropolarimetric analysis of a young Sun hosting a Saturn-like planet , 2010, 1011.2671.

[64]  C. Moutou,et al.  Improved stellar parameters of CoRoT-7 A star hosting two super Earths , 2010, 1005.3208.

[65]  M. Nonino,et al.  On a New Parameter to Estimate the Helium Content in Old Stellar Systems , 2011, 1106.2734.

[66]  Thomas Kallinger,et al.  SOUNDING OPEN CLUSTERS: ASTEROSEISMIC CONSTRAINTS FROM KEPLER ON THE PROPERTIES OF NGC 6791 AND NGC 6819 , 2011, 1102.2231.

[67]  India.,et al.  Fundamental properties of five Kepler stars using global asteroseismic quantities and ground-based observations , 2011, 1111.4615.

[68]  F. Baudin,et al.  Accurate p-mode measurements of the G0V metal-rich CoRoT target HD 52265 , 2011, 1105.3551.