Autonomous flight with robust visual odometry under dynamic lighting conditions

Sensitivity to light conditions poses a challenge when utilizing visual odometry (VO) for autonomous navigation of small aerial vehicles in various applications. We present an illumination-robust direct visual odometry for a stable autonomous flight of an aerial robot under unpredictable light condition. The proposed stereo VO achieves robustness with respect to the light-changing environment by employing the patch-based affine illumination model to compensate abrupt, irregular illumination changes during direct motion estimation. We furthermore incorporate a motion prior from feature-based stereo visual odometry in the optimization, resulting in higher accuracy and more stable motion estimate. Thorough analyses of convergence rate and linearity index for the feature-based and direct VO methods support the effectiveness of the usage of the motion prior knowledge. We extensively evaluate the proposed algorithm on synthetic and real micro aerial vehicle datasets with ground-truth. Autonomous flight experiments with an aerial robot show that the proposed method successfully estimates 6-DoF pose under significant illumination changes.

[1]  H. Jin Kim,et al.  Planning and Control for Collision-Free Cooperative Aerial Transportation , 2018, IEEE Transactions on Automation Science and Engineering.

[2]  Sven Behnke,et al.  Combining Feature-Based and Direct Methods for Semi-dense Real-Time Stereo Visual Odometry , 2016, IAS.

[3]  Jörg Stückler,et al.  Autonomous Exploration with a Low-Cost Quadrocopter using Semi-Dense Monocular SLAM , 2016, ArXiv.

[4]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[5]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Christian Kerl Odometry from RGB-D Cameras for Autonomous Quadrocopters , 2012 .

[7]  Roland Siegwart,et al.  Vision-Controlled Micro Flying Robots: From System Design to Autonomous Navigation and Mapping in GPS-Denied Environments , 2014, IEEE Robotics & Automation Magazine.

[8]  Ji Zhang,et al.  A real-time method for depth enhanced visual odometry , 2017, Auton. Robots.

[9]  Stefano Soatto,et al.  Real-time feature tracking and outlier rejection with changes in illumination , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[10]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[11]  Michael Gassner,et al.  SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems , 2017, IEEE Transactions on Robotics.

[12]  Daniel Cremers,et al.  Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[13]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision , 2004 .

[14]  Daniel Cremers,et al.  Online Photometric Calibration of Auto Exposure Video for Realtime Visual Odometry and SLAM , 2017, IEEE Robotics and Automation Letters.

[15]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[17]  Jörg Stückler,et al.  Large-scale direct SLAM with stereo cameras , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[18]  Julius Ziegler,et al.  StereoScan: Dense 3d reconstruction in real-time , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[19]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[20]  Daniel Cremers,et al.  Robust odometry estimation for RGB-D cameras , 2013, 2013 IEEE International Conference on Robotics and Automation.

[21]  Brett Browning,et al.  Direct Visual Odometry in Low Light Using Binary Descriptors , 2017, IEEE Robotics and Automation Letters.

[22]  Andreas Geiger,et al.  Efficient Large-Scale Stereo Matching , 2010, ACCV.

[23]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Roland Siegwart,et al.  SFly: Swarm of micro flying robots , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Selim Benhimane,et al.  Real-time image-based tracking of planes using efficient second-order minimization , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[26]  Roland Siegwart,et al.  A synchronized visual-inertial sensor system with FPGA pre-processing for accurate real-time SLAM , 2014, ICRA 2014.

[27]  Jizhong Xiao,et al.  Autonomous quadrotor flight using onboard RGB-D visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[28]  H. Jin Kim,et al.  Robust visual odometry to irregular illumination changes with RGB-D camera , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[29]  Albert S. Huang,et al.  Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera , 2011, ISRR.

[30]  Daniel Cremers,et al.  Towards Illumination-Invariant 3D Reconstruction Using ToF RGB-D Cameras , 2014, 2014 2nd International Conference on 3D Vision.

[31]  Zheng Fang,et al.  Experimental study of odometry estimation methods using RGB-D cameras , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Marc Pollefeys,et al.  Illumination change robustness in direct visual SLAM , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[34]  Jose Luis Blanco,et al.  A tutorial on SE(3) transformation parameterizations and on-manifold optimization , 2012 .

[35]  Alois Knoll,et al.  Efficient compositional approaches for real-time robust direct visual odometry from RGB-D data , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[37]  Andreas Geiger,et al.  Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[38]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..