The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases

The MetaCyc database (MetaCyc.org) is a comprehensive and freely accessible database describing metabolic pathways and enzymes from all domains of life. MetaCyc pathways are experimentally determined, mostly small-molecule metabolic pathways and are curated from the primary scientific literature. MetaCyc contains >2100 pathways derived from >37 000 publications, and is the largest curated collection of metabolic pathways currently available. BioCyc (BioCyc.org) is a collection of >3000 organism-specific Pathway/Genome Databases (PGDBs), each containing the full genome and predicted metabolic network of one organism, including metabolites, enzymes, reactions, metabolic pathways, predicted operons, transport systems and pathway-hole fillers. Additions to BioCyc over the past 2 years include YeastCyc, a PGDB for Saccharomyces cerevisiae, and 891 new genomes from the Human Microbiome Project. The BioCyc Web site offers a variety of tools for querying and analysis of PGDBs, including Omics Viewers and tools for comparative analysis. New developments include atom mappings in reactions, a new representation of glycan degradation pathways, improved compound structure display, better coverage of enzyme kinetic data, enhancements of the Web Groups functionality, improvements to the Omics viewers, a new representation of the Enzyme Commission system and, for the desktop version of the software, the ability to save display states.

[1]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[2]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[3]  Trevor C. Charles,et al.  Members of the Sinorhizobium meliloti ChvI regulon identified by a DNA binding screen , 2013, BMC Microbiology.

[4]  Yunlong Liu,et al.  Activation of CpxRA in Haemophilus ducreyi Primarily Inhibits the Expression of Its Targets, Including Major Virulence Determinants , 2013, Journal of bacteriology.

[5]  Dean Ravenscroft,et al.  A genome scale metabolic network for rice and accompanying analysis of tryptophan, auxin and serotonin biosynthesis regulation under biotic stress , 2013, Rice.

[6]  Anders F. Andersson,et al.  Metagenomic De Novo Assembly of an Aquatic Representative of the Verrucomicrobial Class Spartobacteria , 2013, mBio.

[7]  Egils Stalidzans,et al.  Biotechnological potential of respiring Zymomonas mobilis: a stoichiometric analysis of its central metabolism. , 2013, Journal of biotechnology.

[8]  S. Rombauts,et al.  CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data. , 2013, Plant & cell physiology.

[9]  R. Powers,et al.  Inactivation of the Pta-AckA Pathway Causes Cell Death in Staphylococcus aureus , 2013, Journal of bacteriology.

[10]  M. Salvador,et al.  Role of Central Metabolism in the Osmoadaptation of the Halophilic Bacterium Chromohalobacter salexigens* , 2013, The Journal of Biological Chemistry.

[11]  G. Sawers,et al.  Regulation of reductive dehalogenase gene transcription in Dehalococcoides mccartyi , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[12]  Jian Chen,et al.  Reconstruction and analysis of the industrial strain Bacillus megaterium WSH002 genome-scale in silico metabolic model. , 2013, Journal of biotechnology.

[13]  Anne Morgat,et al.  An updated metabolic view of the Bacillus subtilis 168 genome. , 2013, Microbiology.

[14]  P. Karp,et al.  A systematic comparison of the MetaCyc and KEGG pathway databases , 2013, BMC Bioinformatics.

[15]  Jeremy Zucker,et al.  Genomics of Loa loa, a Wolbachia-free filarial parasite of humans , 2013, Nature Genetics.

[16]  Karl A. Hassan,et al.  The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii , 2013, PloS one.

[17]  Cristian Del Fabbro,et al.  Comparative study of RNA-seq- and Microarray-derived coexpression networks in Arabidopsis thaliana , 2013, Bioinform..

[18]  Carla C. C. R. de Carvalho,et al.  Adaptation of Cupriavidus necator to conditions favoring polyhydroxyalkanoate production. , 2013, Journal of biotechnology.

[19]  D. Seung,et al.  Genome-scale reconstruction and in silico analysis of Klebsiella oxytoca for 2,3-butanediol production , 2013, Microbial Cell Factories.

[20]  Q. Hua,et al.  Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata. , 2013, Molecular bioSystems.

[21]  Derek R Lovley,et al.  The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features , 2012, BMC Genomics.

[22]  Ronald W. Davis,et al.  Identification of drug targets by chemogenomic and metabolomic profiling in yeast , 2012, Pharmacogenetics and genomics.

[23]  Curtis Huttenhower,et al.  Chapter 12: Human Microbiome Analysis , 2012, PLoS Comput. Biol..

[24]  Ulrik Plesner Jacobsen,et al.  The chemical interactome space between the human host and the genetically defined gut metabotypes , 2012, The ISME Journal.

[25]  Mihai Pop,et al.  Bioinformatics for the Human Microbiome Project , 2012, PLoS Comput. Biol..

[26]  Robert Powers,et al.  CcpA Regulates Arginine Biosynthesis in Staphylococcus aureus through Repression of Proline Catabolism , 2012, PLoS pathogens.

[27]  J. Nielsen,et al.  Identification of triclosan-degrading bacteria using stable isotope probing, fluorescence in situ hybridization and microautoradiography. , 2012, Microbiology.

[28]  Rene Ranzinger,et al.  The GlycanBuilder and GlycoWorkbench glycoinformatics tools: updates and new developments , 2012, Biological chemistry.

[29]  Peter D. Karp,et al.  Accurate Atom-Mapping Computation for Biochemical Reactions , 2012, J. Chem. Inf. Model..

[30]  Falk Hildebrand,et al.  A comparative analysis of the intestinal metagenomes present in guinea pigs (Cavia porcellus) and humans (Homo sapiens) , 2012, BMC Genomics.

[31]  Liming Liu,et al.  A constraint-based model of Scheffersomyces stipitis for improved ethanol production , 2012, Biotechnology for Biofuels.

[32]  M. Argandoña,et al.  Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli , 2012, BMC Microbiology.

[33]  Liming Liu,et al.  Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. , 2012, Journal of biotechnology.

[34]  D. Schomburg,et al.  Genome-Scale Reconstruction and Analysis of the Metabolic Network in the Hyperthermophilic Archaeon Sulfolobus Solfataricus , 2012, PloS one.

[35]  J. Gogarten,et al.  Vitamin B12 Synthesis and Salvage Pathways Were Acquired by Horizontal Gene Transfer to the Thermotogales , 2012, Genome biology and evolution.

[36]  Tilmann Weber,et al.  Genome‐scale metabolic representation of Amycolatopsis balhimycina , 2012, Biotechnology and bioengineering.

[37]  Asawin Meechai,et al.  iAK692: A genome-scale metabolic model of Spirulina platensis C1 , 2012, BMC Systems Biology.

[38]  R. Heyer,et al.  Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass. , 2012, Canadian journal of microbiology.

[39]  J. Scaria,et al.  Phenotypic and Transcriptomic Response of Auxotrophic Mycobacterium avium Subsp. paratuberculosis leuD Mutant under Environmental Stress , 2012, PloS one.

[40]  Bernard Henrissat,et al.  Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome , 2012, PLoS Comput. Biol..

[41]  S. Rombauts,et al.  The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway. , 2012, The Plant journal : for cell and molecular biology.

[42]  Elhanan Borenstein,et al.  Computational systems biology and in silico modeling of the human microbiome , 2012, Briefings Bioinform..

[43]  D. Ramkrishna,et al.  Prediction of dynamic metabolic behavior of Pediococcus pentosaceus producing lactic acid from lignocellulosic sugars , 2012, Biotechnology progress.

[44]  R. Weselake,et al.  Fatty Acid Composition of Developing Sea Buckthorn (Hippophae rhamnoides L.) Berry and the Transcriptome of the Mature Seed , 2012, PloS one.

[45]  Jinyun Li,et al.  The gpsX gene encoding a glycosyltransferase is important for polysaccharide production and required for full virulence in Xanthomonas citri subsp. citri , 2012, BMC Microbiology.

[46]  V. Novik,et al.  Quantitative Proteomics of Intracellular Campylobacter jejuni Reveals Metabolic Reprogramming , 2012, PLoS pathogens.

[47]  M. Gerstein,et al.  Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides , 2012, PLoS genetics.

[48]  A. Sinskey,et al.  Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production , 2012, Applied Microbiology and Biotechnology.

[49]  Sudhakar Jonnalagadda,et al.  Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis , 2012, Microbial Cell Factories.

[50]  J. Tiedje,et al.  Genome sequence of Desulfitobacterium hafniense DCB-2, a Gram-positive anaerobe capable of dehalogenation and metal reduction , 2012, BMC Microbiology.

[51]  Friedrich Srienc,et al.  Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1 , 2012, Biosyst..

[52]  M. Barrett,et al.  Metabolomic analysis of trypanosomatid protozoa. , 2012, Molecular and biochemical parasitology.

[53]  M. Hattori,et al.  A Deeply Branching Thermophilic Bacterium with an Ancient Acetyl-CoA Pathway Dominates a Subsurface Ecosystem , 2012, PloS one.

[54]  Matthew N. Benedict,et al.  Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A , 2011, Journal of bacteriology.

[55]  Suzanne M. Paley,et al.  The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases , 2011, Nucleic Acids Res..

[56]  S. Cruveiller,et al.  The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions , 2011, The ISME Journal.

[57]  Hannah L. Woo,et al.  Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus , 2011, Proceedings of the National Academy of Sciences.

[58]  Peter D. Karp,et al.  A survey of metabolic databases emphasizing the MetaCyc family , 2011, Archives of Toxicology.

[59]  Robert M. Buels,et al.  The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl , 2010, Nucleic Acids Res..

[60]  P. Karp,et al.  Creation of a Genome-Wide Metabolic Pathway Database for Populus trichocarpa Using a New Approach for Reconstruction and Curation of Metabolic Pathways for Plants1[W][OA] , 2010, Plant Physiology.

[61]  Ron Y. Pinter,et al.  Pathway-Based Functional Analysis of Metagenomes , 2010, RECOMB.

[62]  Carol J Bult,et al.  MouseCyc: a curated biochemical pathways database for the laboratory mouse , 2009, Genome Biology.

[63]  Malcolm J. McConville,et al.  LeishCyc: a biochemical pathways database for Leishmania major , 2009, BMC Systems Biology.

[64]  P. May,et al.  ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii , 2009, BMC Genomics.

[65]  Seongwon Seo,et al.  BMC Systems Biology BioMed Central Methodology article , 2009 .

[66]  Blaz Zupan,et al.  dictyBase—a Dictyostelium bioinformatics resource update , 2008, Nucleic Acids Res..

[67]  Andrew G. McDonald,et al.  ExplorEnz: the primary source of the IUBMB enzyme list , 2008, Nucleic Acids Res..

[68]  Lincoln Stein,et al.  Gramene: a growing plant comparative genomics resource , 2007, Nucleic Acids Res..

[69]  Alessio Ceroni,et al.  The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures , 2007, Source Code for Biology and Medicine.

[70]  Deborah Hix,et al.  PATRIC: The VBI PathoSystems Resource Integration Center , 2006, Nucleic Acids Res..

[71]  S. Rhee,et al.  AraCyc: A Biochemical Pathway Database for Arabidopsis1 , 2003, Plant Physiology.

[72]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[73]  Peter D. Karp,et al.  Machine learning methods for metabolic pathway prediction , 2010 .

[74]  Lloyd W. Sumner,et al.  MedicCyc: a biochemical pathway database for Medicago truncatula , 2007, Bioinform..

[75]  Kara Dolinski,et al.  Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms , 2004, Nucleic Acids Res..