Hybrid real-code ant colony optimisation for constrained mechanical design

This paper proposes a hybrid meta-heuristic based on integrating a local search simplex downhill (SDH) method into the search procedure of real-code ant colony optimisation (ACOR). This hybridisation leads to five hybrid algorithms where a Monte Carlo technique, a Latin hypercube sampling technique (LHS) and a translational propagation Latin hypercube design (TPLHD) algorithm are used to generate an initial population. Also, two numerical schemes for selecting an initial simplex are investigated. The original ACOR and its hybrid versions along with a variety of established meta-heuristics are implemented to solve 17 constrained test problems where a fuzzy set theory penalty function technique is used to handle design constraints. The comparative results show that the hybrid algorithms are the top performers. Using the TPLHD technique gives better results than the other sampling techniques. The hybrid optimisers are a powerful design tool for constrained mechanical design problems.

[1]  Christian Blum,et al.  An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training , 2007, Neural Computing and Applications.

[2]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[3]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[4]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[5]  G. Venter,et al.  An algorithm for fast optimal Latin hypercube design of experiments , 2010 .

[6]  Sujin Bureerat,et al.  Hybrid Population-Based Incremental Learning Using Real Codes , 2011, LION.

[7]  Sujin Bureerat,et al.  Comparative Performance of Surrogate-Assisted MOEAs for Geometrical Design of Pin-Fin Heat Sinks , 2012, J. Appl. Math..

[8]  Ali Husseinzadeh Kashan,et al.  An efficient algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA) , 2011, Comput. Aided Des..

[9]  Jagabondhu Hazra,et al.  Application of Soft Computing Methods for Economic Dispatch in Power Systems , 2009 .

[10]  Ali R. Yildiz,et al.  A novel hybrid immune algorithm for global optimization in design and manufacturing , 2009 .

[11]  Janez Brest,et al.  Differential evolution and differential ant-stigmergy on dynamic optimisation problems , 2013, Int. J. Syst. Sci..

[12]  Ruppa K. Thulasiram,et al.  HOPNET: A hybrid ant colony optimization routing algorithm for mobile ad hoc network , 2009, Ad Hoc Networks.

[13]  S. Bureerat,et al.  Geometrical Design of Plate-Fin Heat Sinks Using Hybridization of MOEA and RSM , 2008, IEEE Transactions on Components and Packaging Technologies.

[14]  Julio R. Banga,et al.  An Extended Ant Colony Optimization Algorithm for Integrated Process and Control System Design , 2009 .

[15]  Siamak Talatahari,et al.  Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures , 2009 .

[16]  Damodar Maity,et al.  Damage assessment of truss structures from changes in natural frequencies using ant colony optimization , 2012, Appl. Math. Comput..

[17]  Maziah Mohamad,et al.  Continuous ant colony optimisation for active vibration control of flexible beam structures , 2011, 2011 IEEE International Conference on Mechatronics.

[18]  Shih-Wei Lin,et al.  An enhanced ant colony optimization (EACO) applied to capacitated vehicle routing problem , 2010, Applied Intelligence.

[19]  Ye Xu,et al.  Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm , 2011, Expert Syst. Appl..

[20]  Jing Xiao,et al.  A hybrid ant colony optimization for continuous domains , 2011, Expert Syst. Appl..

[21]  Akbar Karimi,et al.  Continuous ant colony system and tabu search algorithms hybridized for global minimization of continuous multi-minima functions , 2010, Comput. Optim. Appl..

[22]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[23]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[24]  N. Pholdee,et al.  Performance enhancement of multiobjective evolutionary optimisers for truss design using an approximate gradient , 2012 .

[25]  R YildizAli Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach , 2013 .

[26]  Chih-Ming Hsu,et al.  Applying genetic programming and ant colony optimisation to improve the geometric design of a reflector , 2012, Int. J. Syst. Sci..

[27]  M. E. Botkin,et al.  Shape Optimization with Buckling and Stress Constraints , 1996 .

[28]  George Lindfield,et al.  Numerical Methods Using MATLAB , 1998 .

[29]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[30]  S. Vijayarangan,et al.  Simulated annealing approach to the optimal design of automotive suspension systems , 2007 .

[31]  Xiaoli Zhang,et al.  An ACO-based algorithm for parameter optimization of support vector machines , 2010, Expert Syst. Appl..

[32]  Kazuhiro Izui,et al.  A hybrid model-classifier framework for managing prediction uncertainty in expensive optimisation problems , 2012, Int. J. Syst. Sci..

[33]  Leandro dos Santos Coelho,et al.  A hybrid shuffled complex evolution approach with pattern search for unconstrained optimization , 2011, Math. Comput. Simul..

[34]  Patrick Siarry,et al.  Particle swarm and ant colony algorithms hybridized for improved continuous optimization , 2007, Appl. Math. Comput..

[35]  Jizhong Zhu Optimal Load Shedding , 2015 .

[36]  M. H. Afshar,et al.  A parameter free Continuous Ant Colony Optimization Algorithm for the optimal design of storm sewer networks: Constrained and unconstrained approach , 2010, Adv. Eng. Softw..

[37]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[38]  Sujin Bureerat,et al.  Improved Population-Based Incremental Learning in Continuous Spaces , 2011 .

[39]  Abbas Afshar,et al.  An Improved Continuous Ant Algorithm for Optimization of Water Resources Problems , 2009 .

[40]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[41]  Lionel Amodeo,et al.  Optimization of natural gas pipeline transportation using ant colony optimization , 2009, Comput. Oper. Res..

[42]  Min Kong,et al.  A Direct Application of Ant Colony Optimization to Function Optimization Problem in Continuous Domain , 2006, ANTS Workshop.

[43]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[44]  Ching-Jong Liao,et al.  Ant colony optimization combined with taboo search for the job shop scheduling problem , 2008, Comput. Oper. Res..

[45]  Francisco Herrera,et al.  Continuous scatter search: An analysis of the integration of some combination methods and improvement strategies , 2006, Eur. J. Oper. Res..

[46]  Ali Riza Yildiz,et al.  A new design optimization framework based on immune algorithm and Taguchi's method , 2009, Comput. Ind..

[47]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[48]  Necmettin Kaya,et al.  Hybrid approach for genetic algorithm and Taguchi's method based design optimization in the automotive industry , 2006 .

[49]  Reza Tavakkoli-Moghaddam,et al.  Solving a multi-objective open shop scheduling problem by a novel hybrid ant colony optimization , 2011, Expert Syst. Appl..

[50]  Ali Kaveh,et al.  A HYBRID PARTICLE SWARM AND ANT COLONY OPTIMIZATION FOR DESIGN OF TRUSS STRUCTURES , 2008 .

[51]  Yasin Hajizadeh,et al.  Ant colony optimization for history matching and uncertainty quantification of reservoir models , 2011 .

[52]  Yi-Chih Hsieh,et al.  A new encoding scheme-based hybrid algorithm for minimising two-machine flow-shop group scheduling problem , 2013, Int. J. Syst. Sci..

[53]  Thomas Stützle,et al.  An incremental ant colony algorithm with local search for continuous optimization , 2011, GECCO '11.

[54]  Nantiwat Pholdee,et al.  Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses , 2013, Inf. Sci..

[55]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[56]  Ali R. Yildiz,et al.  A new hybrid particle swarm optimization approach for structural design optimization in the automotive industry , 2012 .

[57]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010, Int. J. Math. Model. Numer. Optimisation.

[58]  Kazuyuki Murase,et al.  A new hybrid ant colony optimization algorithm for feature selection , 2012, Expert Syst. Appl..

[59]  Sujin Bureerat,et al.  Population-Based Incremental Learning for Multiobjective Optimisation , 2007 .

[60]  Marco Dorigo,et al.  Ant colony optimization for continuous domains , 2008, Eur. J. Oper. Res..

[61]  Sujin Bureerat,et al.  Structural topology optimisation using simulated annealing with multiresolution design variables , 2008 .

[62]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[63]  Peng Xu,et al.  Structural health monitoring based on continuous ACO method , 2011, Microelectron. Reliab..

[64]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[65]  Elias Kyriakides,et al.  Hybrid Ant Colony-Genetic Algorithm (GAAPI) for Global Continuous Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[66]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[67]  Ali Rıza Yıldız,et al.  A novel particle swarm optimization approach for product design and manufacturing , 2008 .

[68]  Patrick Siarry,et al.  A hybrid method combining continuous tabu search and Nelder-Mead simplex algorithms for the global optimization of multiminima functions , 2005, Eur. J. Oper. Res..

[69]  Worawat Nakawiro,et al.  Optimal Load Shedding for Voltage Stability Enhancement by Ant Colony Optimization , 2009, 2009 15th International Conference on Intelligent System Applications to Power Systems.

[70]  Abbas Afshar,et al.  Ant Colony Optimization for Continuous Domains: Application to Reservoir Operation Problems , 2008, 2008 Eighth International Conference on Hybrid Intelligent Systems.

[71]  R. Rao,et al.  Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms , 2010 .

[72]  Zhijun Yang,et al.  A quickly convergent continuous ant colony optimization algorithm with Scout Ants , 2011, Appl. Math. Comput..

[73]  Erwie Zahara,et al.  Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems , 2009, Expert Syst. Appl..

[74]  R. J. Kuo,et al.  Hybrid ant colony optimization algorithms for mixed discrete-continuous optimization problems , 2012, Appl. Math. Comput..