Vision‐aided inertial navigation for pin‐point landing using observations of mapped landmarks

In this paper we describe an extended Kalman filter algorithm for estimating the pose and velocity of a spacecraft during entry, descent, and landing. The proposed estimator combines measurements of rotational velocity and acceleration from an inertial measurement unit (IMU) with observations of a priori mapped landmarks, such as craters or other visual features, that exist on the surface of a planet. The tight coupling of inertial sensory information with visual cues results in accurate, robust state estimates available at a high bandwidth. The dimensions of the landing uncertainty ellipses achieved by the proposed algorithm are three orders of magnitude smaller than those possible when relying exclusively on IMU integration. Extensive experimental and simulation results are presented, which demonstrate the applicability of the algorithm on real-world data and analyze the dependence of its accuracy on several system design parameters. © 2007 Wiley Periodicals, Inc.

[1]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[2]  Joris De Schutter,et al.  Kalman filters for nonlinear systems , 2002 .

[3]  Stergios I. Roumeliotis,et al.  Stochastic cloning: a generalized framework for processing relative state measurements , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[4]  Sanjiv Singh,et al.  Motion Estimation from Image and Inertial Measurements , 2004, Int. J. Robotics Res..

[5]  T. Svitek,et al.  Autonomous Low Cost Precision Lander for Lunar Exploration , 2005 .

[6]  Andrew E. Johnson,et al.  Field Testing of the Mars Exploration Rovers Descent Image Motion Estimation System , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[7]  James S. Sobek,et al.  Digital Scene Matching Area Correlator (DSMAC) , 1980, Optics & Photonics.

[8]  Larry H. Matthies,et al.  The Mars Exploration Rovers Descent Image Motion Estimation System , 2004, IEEE Intell. Syst..

[9]  A. B. Chatfield Fundamentals of high accuracy inertial navigation , 1997 .

[10]  Yakup Genc,et al.  GPU-based Video Feature Tracking And Matching , 2006 .

[11]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[12]  N. Trawny,et al.  Indirect Kalman Filter for 3 D Attitude Estimation , 2005 .

[13]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[14]  D.S. Bayard,et al.  An estimation algorithm for vision-based exploration of small bodies in space , 2005, Proceedings of the 2005, American Control Conference, 2005..

[15]  Yang Cheng,et al.  Landmark Based Position Estimation for Pinpoint Landing on Mars , 2005 .

[16]  Kostas Daniilidis,et al.  Linear Pose Estimation from Points or Lines , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[18]  Jacob Willem Langelaan State estimation for autonomous flight in cluttered environments , 2006 .

[19]  Eric N. Johnson,et al.  Vision-Aided Inertial Navigation for Flight Control , 2005 .

[20]  Long Quan,et al.  Linear N-Point Camera Pose Determination , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  J. Junkins,et al.  Optimal Attitude and Position Determination from Line-of-Sight Measurements , 2000 .

[22]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[23]  Stergios I. Roumeliotis,et al.  The Jet Propulsion Laboratory Autonomous Helicopter Testbed: A platform for planetary exploration technology research and development , 2006, J. Field Robotics.

[24]  W. Hartmann Martian cratering VI: Crater count isochrons and evidence for recent volcanism from Mars Global Surveyor , 1999 .

[25]  Daniele Mortari,et al.  Attitude and Position Estimation from Vector Observations , 2004 .

[26]  J. Crassidis,et al.  Observability Analysis of Six-Degree-of-Freedom Configuration Determination Using Vector Observations , 2002 .

[27]  Stergios I. Roumeliotis,et al.  Augmenting inertial navigation with image-based motion estimation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[28]  Clark F. Olson,et al.  Optical landmark detection for spacecraft navigation , 2003 .

[29]  S. Sukkarieh,et al.  Autonomous airborne navigation in unknown terrain environments , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[30]  Tim D. Barfoot,et al.  Online visual motion estimation using FastSLAM with SIFT features , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Juan Andrade-Cetto,et al.  The effects of partial observability in SLAM , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[32]  Stergios I. Roumeliotis,et al.  Autonomous Stair Climbing for Tracked Vehicles , 2007, Int. J. Robotics Res..