Visual target tracking via weighted non-sparse representation and online metric learning

In this paper, we propose online metric learning tracking method that consider visual tracking as a similarity measurement problem, and incorporates adaptive metric learning and generative histogram model based on non-sparse linear representation into the target tracking framework. We propose a generative histogram model based on non-sparse linear representation, which make full use of the non-sparse coefficients to discriminate between the target and the background. The similarity metric is adaptively learned online to maximize the margin of the distance between the foreground target and background. A bi-linear graph is defined accordingly to propagate the label of each sample. The model can also self-update using the more confident new samples. Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms.

[1]  Anders P. Eriksson,et al.  Is face recognition really a Compressive Sensing problem? , 2011, CVPR 2011.

[2]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[4]  Yandong Tang,et al.  Object tracking via online metric learning , 2012, 2012 19th IEEE International Conference on Image Processing.

[5]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[6]  Vincent Lepetit,et al.  Are sparse representations really relevant for image classification? , 2011, CVPR 2011.

[7]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[9]  Huchuan Lu,et al.  Pixel-Wise Spatial Pyramid-Based Hybrid Tracking , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[10]  Samy Bengio,et al.  An Online Algorithm for Large Scale Image Similarity Learning , 2009, NIPS.

[11]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  N. Ahuja,et al.  Robust Visual Tracking via MultiTask Sparse Learning , 2012 .

[13]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[14]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[15]  Huchuan Lu,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Online Object Tracking with Sparse Prototypes , 2022 .

[16]  Andreas E. Savakis,et al.  Online Distance Metric Learning for Object Tracking , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[17]  Huchuan Lu,et al.  Superpixel tracking , 2011, 2011 International Conference on Computer Vision.

[18]  Huchuan Lu,et al.  Least Soft-Threshold Squares Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Horst Bischof,et al.  PROST: Parallel robust online simple tracking , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[22]  Junzhou Huang,et al.  Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization , 2010, ECCV.

[23]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[24]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Lei Zhang,et al.  Sparse representation or collaborative representation: Which helps face recognition? , 2011, 2011 International Conference on Computer Vision.

[26]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[27]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[28]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[29]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Anton van den Hengel,et al.  Non-sparse linear representations for visual tracking with online reservoir metric learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[33]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Nan Jiang,et al.  Learning Adaptive Metric for Robust Visual Tracking , 2011, IEEE Transactions on Image Processing.

[35]  Gang Hua,et al.  Discriminative Tracking by Metric Learning , 2010, ECCV.

[36]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .