Junction formation and interface effects in CZTSe solar cells
暂无分享,去创建一个
Yang Yang | I. Repins | C. Dehart | C. Beall | J. Carapella | Jian V. Li | B. Bob
[1] Suhuai Wei,et al. Impact of bulk properties and local secondary phases on the Cu 2 (Zn,Sn)Se 4 solar cells open-circuit voltage , 2015 .
[2] Wei Wang,et al. Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells , 2014 .
[3] Yang Yang,et al. Growth mechanisms of co‐evaporated kesterite: a comparison of Cu‐rich and Zn‐rich composition paths , 2014 .
[4] Rommel Noufi,et al. The state and future prospects of kesterite photovoltaics , 2013 .
[5] Suhuai Wei,et al. Indications of short minority-carrier lifetime in kesterite solar cells , 2013 .
[6] S. Siebentritt,et al. Kesterites—a challenging material for solar cells , 2012 .
[7] Rommel Noufi,et al. Co-Evaporated Cu2ZnSnSe4 Films and Devices , 2012 .
[8] Supratik Guha,et al. The path towards a high-performance solution-processed kesterite solar cell ☆ , 2011 .
[9] R. Scheer,et al. Interface recombination in heterojunction solar cells: Influence of buffer layer thickness , 2011 .
[10] David B Mitzi,et al. High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.
[11] R. Scheer. Activation energy of heterojunction diode currents in the limit of interface recombination , 2009 .
[12] Marc Burgelman,et al. Modeling polycrystalline semiconductor solar cells , 2000 .
[13] Uwe Rau,et al. Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges , 1999 .