Two color high operating temperature HgCdTe photodetectors grown by molecular beam epitaxy on silicon substrates
暂无分享,去创建一个
The development of a broadband IR focal plane array poses several challenges in the area of detector design, material, device physics, fabrication process, hybridization, integration and testing. The purpose of our research is to address these challenges and demonstrate a high-performance IR system that incorporates a HgCdTe-based detector array with high uniformity and operability. Our detector architecture, grown using molecular beam epitaxy (MBE), is vertically integrated, leading to a stacked detector structure with the capability to simultaneously detect in two spectral bands. MBE is the method of choice for multiplelayer HgCdTe growth because it produces material of excellent quality and allows composition and doping control at the atomic level. Such quality and control is necessary for the fabrication of multicolor detectors since they require advanced bandgap engineering techniques. The proposed technology, based on the bandgap-tunable HgCdTe alloy, has the potential to extend the broadband detector operation towards room temperature. We present here our modeling, MBE growth and device characterization results, demonstrating Auger suppression in the LWIR band and diffusion limited behavior in the MWIR band.
[1] Antoni Rogalski,et al. Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes , 2001, SPIE OPTO.
[2] E. Bellotti,et al. Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors , 2006, IEEE Journal of Quantum Electronics.
[3] Pradip Mitra,et al. Simultaneous MW/LW dual-band MOVPE HgCdTe 64x64 FPAs , 1998, Defense, Security, and Sensing.
[4] J. Piotrowski,et al. Numerical analysis of longwavelength extracted photodiodes , 1993 .