Global Motion Stimuli and Form-From-Motion Stimuli: Common Characteristics and Differential Activation Patterns

We used functional Magnetic Resonance Imaging (fMRI) to explore the areas underlying the processing of two similar motion stimuli that evoke different types of processing. The results indicated that while form-from-motion (FFM) stimuli activated both lateral occipital complex (LOC) and MT complex (MT+), only the LOC remained significantly activated when contrasted with a global motion stimulus (GMS) with different coherence levels. Because of the large number of common characteristics shared between the stimuli, this contrast enabled us to isolate the regions implicated in form processing. The GMS on the other hand only activated MT+, reaching maximal intensity for low coherence. Overall, these data illustrate how two similar motion stimuli can elicit the participation of different cortical visual regions.

[1]  Bruno A Olshausen,et al.  Processing shape, motion and three-dimensional shape-from-motion in the human cortex. , 2003, Cerebral cortex.

[2]  D. Snodderly,et al.  Direction selectivity in V1 of alert monkeys: evidence for parallel pathways for motion processing , 2007, The Journal of physiology.

[3]  Tutis Vilis,et al.  Segregation and persistence of form in the lateral occipital complex , 2005, Neuropsychologia.

[4]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[5]  Tutis Vilis,et al.  The lateral occipital complex subserves the perceptual persistence of motion-defined groupings. , 2003, Cerebral cortex.

[6]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[7]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[8]  O. Braddick,et al.  Brain Areas Sensitive to Coherent Visual Motion , 2001, Perception.

[9]  A Berthoz,et al.  Visual perception of motion and 3-D structure from motion: an fMRI study. , 2000, Cerebral cortex.

[10]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[11]  R. Turner,et al.  Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain , 2000, Current Biology.

[12]  Alan C. Evans,et al.  A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. , 2000, Cerebral cortex.

[13]  J. Raymond Attentional modulation of visual motion perception , 2000, Trends in Cognitive Sciences.

[14]  Toshio Inui,et al.  The role of the posterior parietal cortex in human object recognition: a functional magnetic resonance imaging study , 1999, Neuroscience Letters.

[15]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[16]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[17]  M. Botvinick,et al.  Anterior cingulate cortex, error detection, and the online monitoring of performance. , 1998, Science.

[18]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[19]  A. Dale,et al.  New images from human visual cortex , 1996, Trends in Neurosciences.

[20]  R. S. J. Frackowiak,et al.  Activity in human areas V1/V2, V3 and V5 during the perception of coherent and incoherent motion , 1996, NeuroImage.

[21]  R. S. J. Frackowiak,et al.  The Activity in Human Areas V1/V2, V3, and V5 during the Perception of Coherent and Incoherent Motion , 1996, NeuroImage.

[22]  C. N. Guy,et al.  The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. , 1995, Brain : a journal of neurology.

[23]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P E Roland,et al.  Visual form discrimination from color or motion cues: functional anatomy by positron emission tomography. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[26]  D. Regan,et al.  Visual processing of motion-defined form: selective failure in patients with parietotemporal lesions , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[29]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[31]  William T. Newsome,et al.  Effects of inferotemporal cortex lesions on form-from-motion discrimination in monkeys , 2005, Experimental Brain Research.

[32]  M. Meng,et al.  Relationship between ventral stream for object vision and dorsal stream for spatial vision: An fMRI+ERP study , 1999, Human brain mapping.

[33]  B. J. McCurtain,et al.  Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study. , 1998, Cerebral cortex.

[34]  Leslie G. Ungerleider Two cortical visual systems , 1982 .