Predictions of Free-Carrier Electroabsorption and Electrorefraction in Germanium

Germanium is becoming an important material for mid-infrared photonics, but the modulation mechanisms in Ge are not yet well understood. In this paper, we estimate the size of free-carrier electroabsorption and electrorefraction effects in germanium across the 2 to 16-μm wavelength range at 300 K. The predictions are based as much as possible upon experimental absorption data from the literature and are supported by extrapolations from experimental data using first-principle quantum theoretical modeling. We find that free-carrier absorption is substantially stronger in Ge than in Si.

[1]  P. Aigrain,et al.  Optical Absorption of Arsenic-Doped Degenerate Germanium , 1962 .

[2]  Zoran Ikonic,et al.  The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications , 2012 .

[3]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[4]  W. Spitzer,et al.  Determination of Optical Constants and Carrier Effective Mass of Semiconductors , 1957 .

[5]  P. K. Basu,et al.  Theory of optical processes in semiconductors : bulk and microstructures , 1997 .

[6]  R. A. Logan,et al.  Properties of Heavily Doped n‐Type Germanium , 1961 .

[7]  Yu-Chi Chang,et al.  Low-loss germanium strip waveguides on silicon for the mid-infrared. , 2012, Optics letters.

[8]  G. V. Samsonov Chemical Properties of the Elements , 1968 .

[9]  Kang L. Wang,et al.  FAR-INFRARED FREE-HOLE ABSORPTION IN EPITAXIAL SILICON FILMS FOR HOMOJUNCTION DETECTORS , 1997 .

[10]  Milos Nedeljkovic,et al.  Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers , 2015, IEEE Photonics Technology Letters.

[11]  R. Soref Silicon-based silicon–germanium–tin heterostructure photonics , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  J. E. Carceller,et al.  Simple analytical valence band structure including warping and non-parabolicity to investigate hole transport in Si and Ge , 2005 .

[13]  R. Soref,et al.  Germanium as a material for stimulated Brillouin scattering in the mid-infrared. , 2014, Optics express.

[14]  Milos Nedeljkovic,et al.  Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides. , 2015, Optics letters.

[15]  Richard Soref,et al.  Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures. , 2012, Optics express.

[16]  R. Newman,et al.  Effect of Impurities on Free-Hole Infrared Absorption in p-Type Germanium , 1957 .

[17]  Esther M. Conwell Properties of Silicon and Germanium , 1952, Proceedings of the IRE.

[18]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[19]  A. Rosen,et al.  Characteristics of THz waves and carrier scattering in boron-doped epitaxial Si and Si1−xGex films , 2004 .

[20]  Simulation of Heterojunction Bipolar Transistors in Two Dimensions , 1989 .

[21]  H. Li Refractive index of silicon and germanium and its wavelength and temperature derivatives , 1980 .

[22]  R. Soref,et al.  Single-mode GeSn mid-infrared waveguides on group-IV substrates , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[23]  M. Soma,et al.  Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure , 1990 .

[24]  J. Dismukes,et al.  Lattice Parameter and Density in Germanium-Silicon Alloys1 , 1964 .

[25]  J. Michel,et al.  Infrared absorption of n-type tensile-strained Ge-on-Si. , 2013, Optics letters.

[26]  David J. Thomson,et al.  Mid-Infrared Thermo-Optic Modulators in SoI , 2014, IEEE Photonics Technology Letters.

[27]  Gunther Roelkens,et al.  Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared. , 2014, Optics express.

[28]  M. Nedeljkovic,et al.  Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14- $\mu\hbox{m}$ Infrared Wavelength Range , 2011, IEEE Photonics Journal.

[29]  W. Fawcett,et al.  Optical Absorption due to Free Holes in Germanium: A Comparison of Theory and Experiment , 1966 .

[30]  B. Ridley Quantum Processes in Semiconductors , 1982 .

[31]  Richard A. Soref,et al.  Silicon waveguided components for the long-wave infrared regionThis article was submitted to the spe , 2006 .

[32]  Chin‐Yi Tsai,et al.  Theoretical model for intravalley and intervalley free-carrier absorption in semiconductor lasers: beyond the classical Drude model , 1998 .

[33]  H. B. Briggs,et al.  New Infrared Absorption Bands in p-Type Germanium , 1952 .

[34]  V. Fistul Optical Properties of Heavily Doped Semiconductors , 1969 .

[35]  R. Newman,et al.  Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77°K and 300°K , 1955 .

[36]  Douglas B. Leviton,et al.  Temperature-dependent refractive index of silicon and germanium , 2006, SPIE Astronomical Telescopes + Instrumentation.

[37]  H. B. Briggs,et al.  Absorption of Infrared Light by Free Carriers in Germanium , 1953 .

[38]  Jasprit Singh,et al.  Physics of Semiconductors and Their Heterostructures , 1992 .

[39]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[40]  Richard A. Soref,et al.  The third-order nonlinear optical coefficients of Si, Ge, and Si1−xGex in the midwave and longwave infrared , 2011 .

[41]  J. C. Irvin,et al.  Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300°K , 1968 .

[42]  Gunther Roelkens,et al.  Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range , 2014, IEEE Journal of Selected Topics in Quantum Electronics.