Limitations of passive remote sensing to constrain global cloud condensation nuclei

Abstract. Aerosol–cloud interactions are considered a key uncertainty in our understanding of climate change (Boucher et al., 2013). Knowledge of the global abundance of cloud condensation nuclei (CCN) is fundamental to determine the strength of the anthropogenic climate perturbation. Direct measurements are limited and sample only a very small fraction of the globe so that remote sensing from satellites and ground-based instruments is widely used as a proxy for cloud condensation nuclei (Nakajima et al., 2001; Andreae, 2009; Clarke and Kapustin, 2010; Boucher et al., 2013). However, the underlying assumptions cannot be robustly tested with the small number of measurements available so that no reliable global estimate of cloud condensation nuclei exists. This study overcomes this limitation using a self-consistent global model (ECHAM-HAM) of aerosol radiative properties and cloud condensation nuclei. An analysis of the correlation of simulated aerosol radiative properties and cloud condensation nuclei reveals that common assumptions about their relationships are violated for a significant fraction of the globe: 71 % of the area of the globe shows correlation coefficients between CCN0.2 % at cloud base and aerosol optical depth (AOD) below 0.5, i.e. AOD variability explains only 25 % of the CCN variance. This has significant implications for satellite based studies of aerosol–cloud interactions. The findings also suggest that vertically resolved remote-sensing techniques, such as satellite-based high spectral resolution lidars, have a large potential for global monitoring of cloud condensation nuclei.

[1]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[2]  Michael Schulz,et al.  Will a perfect model agree with perfect observations? The impact of spatial sampling , 2016 .

[3]  M. Andreae Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions , 2008 .

[4]  Jack J. Lin,et al.  The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: indications of underlying aerosol processes and implications for satellite-based CCN estimates , 2015 .

[5]  Ulrike Lohmann,et al.  Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model , 1996 .

[6]  P. Stier,et al.  Cloud fraction mediates the aerosol optical depth‐cloud top height relationship , 2014 .

[7]  P. Stier,et al.  Wet scavenging limits the detection of aerosol effects on precipitation , 2015 .

[8]  U. Lohmann,et al.  The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations , 2012 .

[9]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[10]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[11]  U. Lohmann,et al.  Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM , 2007 .

[12]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[13]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[14]  D. R. Worsnop,et al.  Evolution of Organic Aerosols in the Atmosphere , 2009, Science.

[15]  Philip Stier,et al.  The importance of temporal collocation for the evaluation of aerosol models with observations , 2015 .

[16]  U. Lohmann,et al.  Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM , 2010 .

[17]  Chris Hostetler,et al.  Progress in the validation of dual-wavelength aerosol retrieval models via airborne high spectral resolution lidar data , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[18]  G. Feingold,et al.  The scale problem in quantifying aerosol indirect effects , 2011 .

[19]  M. Chin,et al.  Aerosol anthropogenic component estimated from satellite data , 2005 .

[20]  S. Howell,et al.  On the determination of a cloud condensation nuclei from satellite: Challenges and possibilities , 2006 .

[21]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[22]  M. Brauer,et al.  Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application , 2010, Environmental health perspectives.

[23]  Steven J. Ghan,et al.  A parameterization of aerosol activation: 1. Single aerosol type , 1998 .

[24]  P. Stier,et al.  A pathway analysis of global aerosol processes , 2014 .

[25]  A. Clarke,et al.  Hemispheric Aerosol Vertical Profiles: Anthropogenic Impacts on Optical Depth and Cloud Nuclei , 2010, Science.

[26]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[27]  B. Stevens,et al.  The Atmospheric Component of the MPI-M Earth 1 System Model : ECHAM 6 2 , 2012 .

[28]  A. Slingo,et al.  General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol , 1997 .

[29]  C. O'Dowd,et al.  Flood or Drought: How Do Aerosols Affect Precipitation? , 2008, Science.

[30]  Philip Stier,et al.  A critical look at spatial scale choices in satellite-based aerosol indirect effect studies , 2010 .

[31]  W. Cotton,et al.  Feasibility of Retrieving Cloud Condensation Nucleus Properties from Doppler Cloud Radar, Microwave Radiometer, and Lidar , 1998 .

[32]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[33]  C. Flynn,et al.  Use of in situ cloud condensation nuclei, extinction, and aerosol size distribution measurements to test a method for retrieving cloud condensation nuclei profiles from surface measurements , 2006 .

[34]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[35]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[36]  Teruyuki Nakajima,et al.  A possible correlation between satellite‐derived cloud and aerosol microphysical parameters , 2001 .

[37]  M. Chin,et al.  Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations , 2012 .

[38]  F. Maignan,et al.  Remote sensing of aerosols over land surfaces from POLDER‐ADEOS‐1 polarized measurements , 2001 .

[39]  G. Mann,et al.  Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity , 2014 .

[40]  Olivier Boucher,et al.  Aerosol absorption and radiative forcing , 2006 .

[41]  W. Collins,et al.  Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models , 2008 .

[42]  J. Wilson,et al.  M7: An efficient size‐resolved aerosol microphysics module for large‐scale aerosol transport models , 2004 .

[43]  E. Lovejoy,et al.  A semi-analytical method for calculating rates of new sulfate aerosol formation from the gas phase , 2007 .

[44]  J. Kristjánsson,et al.  Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model , 1989 .

[45]  P. Forster,et al.  Global cloud condensation nuclei influenced by carbonaceous combustion aerosol , 2011 .

[46]  Sonia M. Kreidenweis,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 3: Including surfactant partitioning , 2012 .

[47]  B. Stevens,et al.  Untangling aerosol effects on clouds and precipitation in a buffered system , 2009, Nature.

[48]  Lennart Bengtsson,et al.  On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation , 1996 .

[49]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[50]  M. Chin,et al.  Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study , 2012 .

[51]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[52]  Yoram J. Kaufman,et al.  Effect of Amazon smoke on cloud microphysics and albedo - analysis from satellite imagery , 1993 .

[53]  S. Ghan,et al.  Use of In Situ Data to Test a Raman Lidar Based Cloud Condensation Nuclei Remote Sensing Method , 2004 .

[54]  Zhanqing Li,et al.  Estimation of cloud condensation nuclei concentration from aerosol optical quantities: influential factors and uncertainties , 2013 .

[55]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .