Metric Entropy of Integration Operators and Small Ball Probabilities for the Brownian Sheet

Let T"d:L"2([0, 1]^d)->C([0, 1]^d) be the d-dimensional integration operator. We show that its Kolmogorov and entropy numbers decrease with order at least k^-^1(logk)^d^-^1^/^2. From this we derive that the small ball probabilities of the Brownian sheet on [0, 1]^d under the C([0, 1]^d)-norm can be estimated from below by exp(-C@e^-^2|log@e|^2^d^-^1), which improves the best known lower bounds considerably. We also get similar results with respect to certain Orlicz norms.

[1]  B. Carl,et al.  Entropy, Compactness and the Approximation of Operators , 1990 .

[2]  B. Carl Entropy numbers, s-numbers, and eigenvalue problems , 1981 .

[3]  Wenbo V. Li Comparison results for the lower tail of Gaussian seminorms , 1992 .

[4]  Estimates for the Small Ball Probabilities of the Fractional Brownian Sheet , 2000 .

[5]  Q. Shao,et al.  Small ball probabilities of Gaussian fields , 1995 .

[6]  M. Lifshits Gaussian Random Functions , 1995 .

[7]  Vladimir N. Temlyakov An Inequality for Trigonometric Polynomials and Its Application for Estimating the Entropy Numbers , 1995, J. Complex..

[8]  Dualité des nombres d'entropie pour des opérateurs à valeurs dans un espace de Hilbert , 1987 .

[9]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[10]  Michel Talagrand,et al.  The Small Ball Problem for the Brownian Sheet , 1994 .

[11]  Small ball estimates for the fractional brownian sheet , 1999 .

[12]  Richard F. Bass Probability Estimates for Multiparameter Brownian Processes , 1988 .

[13]  A. Pajor,et al.  Subspaces of small codimension of finite-dimensional Banach spaces , 1986 .

[14]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[15]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[16]  J. Kuelbs,et al.  Metric entropy and the small ball problem for Gaussian measures , 1993 .

[17]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[18]  A. Pietsch Eigenvalues and S-Numbers , 1987 .

[19]  How Small are the Increments of a Wiener Sheet , 1981 .

[20]  B. Carl,et al.  s-Numbers of integral operators with Hölder continuous kernels over metric compacta , 1988 .

[21]  Some small ball probabilities for Gaussian processes under nonuniform norms , 1996 .

[22]  E. S. Belinsky Estimates of Entropy Numbers and Gaussian Measures for Classes of Functions with Bounded Mixed Derivative , 1998 .

[23]  V. N. Temli︠a︡kov Approximation of functions with bounded mixed derivative , 1989 .

[24]  M. Ledoux,et al.  Isoperimetry and Gaussian analysis , 1996 .

[25]  Werner Linde,et al.  Approximation, metric entropy and small ball estimates for Gaussian measures , 1999 .

[26]  Small ball problem via wavelets for Gaussian processes , 1997 .