Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling

Abstract A crack propagation modelling technique combining the scaled boundary finite element method and quadtree meshes is developed. This technique automatically satisfies the compatibility requirement between adjacent quadtree cells irrespective of the presence of hanging nodes. The quadtree structure facilitates efficient data storage and rapid computations. Only a single cell is required to accurately model the stress field near crack tips. Crack growth is modelled by splitting the cells in the mesh into two. The resulting polygons are directly modelled by the scaled boundary formulation with minimal changes to the mesh. Four numerical examples demonstrate the salient features of the technique.

[1]  N. Sukumar,et al.  Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons , 2013 .

[2]  A. Gupta A finite element for transition from a fine to a coarse grid , 1978 .

[3]  Chongmin Song A matrix function solution for the scaled boundary finite-element equation in statics , 2004 .

[4]  P. Bouchard,et al.  Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria , 2003 .

[5]  O. Ghattas,et al.  Parallel Octree-Based Finite Element Method for Large-Scale Earthquake Ground Motion Simulation , 2005 .

[6]  F. Tin-Loi,et al.  Polygon scaled boundary finite elements for crack propagation modelling , 2012 .

[7]  F. Tin-Loi,et al.  A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges , 2010 .

[8]  Amir R. Khoei,et al.  Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique , 2008 .

[9]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[10]  S. Natarajan,et al.  Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation , 2014 .

[11]  Wilfried Becker,et al.  Computation of 3-D stress singularities for multiple cracks and crack intersections by the scaled boundary finite element method , 2012, International Journal of Fracture.

[12]  Hanan Samet,et al.  Hierarchical data structures and algorithms for computer graphics. II. Applications , 1988, IEEE Computer Graphics and Applications.

[13]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[14]  Thomas-Peter Fries,et al.  Hanging nodes and XFEM , 2011 .

[15]  Stéphane Popinet,et al.  Quadtree-adaptive tsunami modelling , 2011 .

[16]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[17]  Chang-Koon Choi,et al.  Nonconforming Variable-Node Axisymmetric Solid Element , 2004 .

[18]  K. Y. Sze,et al.  Adaptive refinement analysis using hybrid-stress transition elements , 2006 .

[19]  Hanan Samet,et al.  Neighbor finding techniques for images represented by quadtrees , 1982, Comput. Graph. Image Process..

[20]  Qiuhua Liang,et al.  Flood Inundation Modeling with an Adaptive Quadtree Grid Shallow Water Equation Solver , 2008 .

[21]  Pierre-Olivier Bouchard,et al.  Crack propagation modelling using an advanced remeshing technique , 2000 .

[22]  Hanan Samet,et al.  Hierarchical data structures and algorithms for computer graphics. I. Fundamentals , 1988, IEEE Computer Graphics and Applications.

[23]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[24]  T. Pian Derivation of element stiffness matrices by assumed stress distributions , 1964 .

[25]  Mohamed S. Ebeida,et al.  Guaranteed-Quality All-Quadrilateral Mesh Generation with Feature Preservation , 2009, IMR.

[26]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[27]  F. Betul Atalay,et al.  Quadrilateral meshes with provable angle bounds , 2011, Engineering with Computers.

[28]  José Roger Folch,et al.  Quadtree Meshes Applied to the Finite Element Computation of Phase Inductances in An Induction Machine , 2008 .

[29]  M. Rashid The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis , 1998 .

[30]  Paul A. Wawrzynek,et al.  Quasi-automatic simulation of crack propagation for 2D LEFM problems , 1996 .

[31]  María Cecilia Rivara,et al.  Automatic LEFM crack propagation method based on local Lepp-Delaunay mesh refinement , 2010, Adv. Eng. Softw..

[32]  K. Y. Sze,et al.  Transition finite element families for adaptive analysis of axisymmetric elasticity problems , 2011 .

[33]  N. Sukumar,et al.  Extended finite element method on polygonal and quadtree meshes , 2008 .

[34]  L. Demkowicz,et al.  Analysis of the equilibrated residual method for a posteriori error estimation on meshes with hanging nodes , 2007 .

[35]  Alireza Tabarraei,et al.  Adaptive computations on conforming quadtree meshes , 2005 .

[36]  Joaquim B. Cavalcante Neto,et al.  A distributed-memory parallel technique for two-dimensional mesh generation for arbitrary domains , 2013, Adv. Eng. Softw..

[37]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[38]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[39]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.