Mode expansion theory and application in step-index multimode fibers for astronomical spectroscopy

In astronomical spectroscopy, optical fibres are abundantly used for multiplexing and decoupling the spectrograph from the telescope to provide stability in a controlled environment. However, fibres are less than perfect optical components and introduce complex effects that diminish the overall throughput, efficiency, and stability of the instrument. We present a novel numerical field propagation model that emulates the effects of modal noise, scrambling, and focal ratio degradation with a rigorous treatment of wave optics. We demonstrate that the simulation of the near- and far-field output of a fiber, injected into a ray-tracing model of the spectrograph, allows to assess performance at the detector level.

[1]  K. Honscheid,et al.  Performance of the Dark Energy Spectroscopic Instrument (DESI) focal plane , 2020, Ground-based and Airborne Instrumentation for Astronomy VIII.

[2]  J. L. Rasilla,et al.  ESPRESSO at VLT , 2020 .

[3]  J. L. Rasilla,et al.  ESPRESSO@VLT -- On-sky performance and first results , 2020, 2010.00316.

[4]  M. Colless Key early science with MANIFEST on GMT , 2018, 1809.05804.

[5]  A. Kelz,et al.  MOSAIC: the ELT multi-object spectrograph , 2018, Astronomical Telescopes + Instrumentation.

[6]  M. Genoni,et al.  ELT-HIRES, the high resolution spectrograph for the ELT: results from the Phase A study , 2018, Astronomical Telescopes + Instrumentation.

[7]  K. Strassmeier,et al.  PEPSI deep spectra. I. The Sun-as-a-star , 2017, 1712.06960.

[8]  R. Bacon Optical 3D-Spectroscopy for Astronomy , 2017 .

[9]  Roger Haynes,et al.  4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review , 2016, Astronomical Telescopes + Instrumentation.

[10]  Jason Wright,et al.  A comprehensive radial velocity error budget for next generation Doppler spectrometers , 2016, Astronomical Telescopes + Instrumentation.

[11]  L. Pastewka,et al.  Quantitative characterization of surface topography using spectral analysis , 2016, 1607.03040.

[12]  A. Kelz,et al.  The Potsdam MRS spectrograph: heritage of MUSE and the impact of cross-innovation in the process of technology transfer , 2016, Astronomical Telescopes + Instrumentation.

[13]  A. Weijmans MaNGA: Mapping Nearby Galaxies at Apache Point Observatory , 2015, 1508.04314.

[14]  J. P. Torres-Papaqui,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey - III. Second public data release , 2012, 1210.8150.

[15]  I. Ribas,et al.  CARMENES. I. A radial-velocity survey for terrestrial planets in the habitable zones of M dwarfs. A historical overview , 2012, 1210.5465.

[16]  Tony Farrell,et al.  SAMI: a new multi-object IFS for the Anglo-Australian Telescope , 2012, Other Conferences.

[17]  Keegan S. McCoy,et al.  Optical fiber modal noise in the 0.8 to 1.5 micron region and implications for near infrared precision radial velocity measurements , 2012, Other Conferences.

[18]  Suvrath Mahadevan,et al.  The habitable-zone planet finder: a stabilized fiber-fed NIR spectrograph for the Hobby-Eberly Telescope , 2012, Other Conferences.

[19]  Pascal Jagourel,et al.  MOONS: a multi-object optical and near-infrared spectrograph for the VLT , 2012, Other Conferences.

[20]  J. Allington-Smith,et al.  Simulation of complex phenomena in optical fibres , 2012, 1207.4512.

[21]  R. Haynes,et al.  Relative contributions of scattering, diffraction and modal diffusion to focal ratio degradation in optical fibres , 2011 .

[22]  U. Lemke,et al.  Modal noise prediction in fibre-spectroscopy I: Visibility and the coherent model , 2011, 1106.1288.

[23]  D. Lemke,et al.  Modern Technologies in Space- and Ground-based Telescopes and Instrumentation , 2010 .

[24]  J. Allington-Smith,et al.  Characterising modal noise in fibre-coupled spectrographs for astronomy , 2010, Astronomical Telescopes + Instrumentation.

[25]  Andreas Kelz,et al.  Supercontinuum light sources for use in astronomical instrumentation: a test with PMAS, the Potsdam multi-aperture spectrophotometer , 2010, Astronomical Telescopes + Instrumentation.

[26]  Gerardo Avila,et al.  Results on fibre scrambling for high accuracy radial velocity measurements , 2010, Astronomical Telescopes + Instrumentation.

[27]  Jurek Brzeski,et al.  Fibre-Multi-Object Spectrograph (FMOS) for Subaru Telescope , 2010, SPIE Astronomical Telescopes + Instrumentation.

[28]  P. Weilbacher,et al.  P3D: a general data-reduction tool for fiber-fed integral-field spectrographs , 2010, 1002.4406.

[29]  A. Boudrioua Optical Waveguide Theory , 2010 .

[30]  Lisa A. Crause,et al.  Investigation of focal ratio degradation in optical fibres for astronomical instrumentation , 2008, Astronomical Telescopes + Instrumentation.

[31]  D. O. Astronomy,et al.  The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX): Description and Early Pilot Survey Results , 2008, 0806.0183.

[32]  J. Allington-Smith,et al.  Fibre modal power distributions in astronomy and their application to OH-suppression fibres , 2007 .

[33]  H Germany,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.

[34]  J. Schmoll,et al.  Statistical Test of Optical Fibers for Use in PMAS, the Potsdam Multi‐Aperture Spectrophotometer , 2003, astro-ph/0304288.

[35]  Tony Farrell,et al.  Installation and Commissioning of FLAMES, the VLT Multifibre Facility , 2002 .

[36]  Gordon A. H. Walker,et al.  Modal Noise in High‐Resolution, Fiber‐fed Spectra: A Study and Simple Cure , 2001 .

[37]  T. Ida,et al.  Extended pseudo-Voigt function for approximating the Voigt profile , 2000 .

[38]  Bernard Delabre,et al.  HARPS: a new high-resolution spectrograph for the search of extrasolar planets , 2000, Astronomical Telescopes and Instrumentation.

[39]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[40]  Ian R. Parry,et al.  A method for determining the focal ratio degradation of optical fibres for astronomy , 1994 .

[41]  Wei-Ping Huang Coupled-mode theory for optical waveguides: an overview , 1994 .

[42]  Todd R. Hunter,et al.  SCRAMBLING PROPERTIES OF OPTICAL FIBERS AND THE PERFORMANCE OF A DOUBLE SCRAMBLER , 1992 .

[43]  Pierre Connes,et al.  Optical fibers in astronomical instruments , 1992 .

[44]  T H Wood,et al.  Actual modal power distributions in multimode optical fibers and their effect on modal noise. , 1984, Optics letters.

[45]  K. Aoyama,et al.  Modal-noise evaluation in multimode-fiber transmission. , 1983, Optics letters.

[46]  K. Petermann,et al.  Nonlinear distortions and noise in optical communication systems due to fiber connectors , 1980 .

[47]  Richard Edward Epworth,et al.  Phenomenon of modal noise in fiber systems , 1979 .

[48]  John F. Kielkopf,et al.  New approximation to the Voigt function with applications to spectral-line profile analysis , 1973 .

[49]  D. Gloge,et al.  Optical power flow in multimode fibers , 1972 .

[50]  J. Peyre,et al.  Linear combination of Lorentzian and Gaussian profiles to fit resonance spectra (Letter to the Editor) , 1972 .

[51]  Ellis E. Whiting,et al.  An empirical approximation to the Voigt profile , 1968 .

[52]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[53]  I. Guinouard,et al.  Use and Development of Fiber Optics on the VLT , 1998 .

[54]  Taft E. Armandroff,et al.  Observational Performance of Fiber Optics - High Precision Sky Subtraction and Radial Velocities , 1993 .

[55]  Lawrence W. Ramsey,et al.  Focal ratio degradation in optical fibers of astronomical interest , 1988 .

[56]  K. Glazebrook First Results from the 2df Galaxy Redshift Survey , 2022 .