Mode expansion theory and application in step-index multimode fibers for astronomical spectroscopy
暂无分享,去创建一个
Technische Universitat Berlin | K. Petermann | A. Kelz | M. Roth | B. Moralejo | K. Madhav | E. Hernandez | K. G. S. A. I. Potsdam
[1] K. Honscheid,et al. Performance of the Dark Energy Spectroscopic Instrument (DESI) focal plane , 2020, Ground-based and Airborne Instrumentation for Astronomy VIII.
[2] J. L. Rasilla,et al. ESPRESSO at VLT , 2020 .
[3] J. L. Rasilla,et al. ESPRESSO@VLT -- On-sky performance and first results , 2020, 2010.00316.
[4] M. Colless. Key early science with MANIFEST on GMT , 2018, 1809.05804.
[5] A. Kelz,et al. MOSAIC: the ELT multi-object spectrograph , 2018, Astronomical Telescopes + Instrumentation.
[6] M. Genoni,et al. ELT-HIRES, the high resolution spectrograph for the ELT: results from the Phase A study , 2018, Astronomical Telescopes + Instrumentation.
[7] K. Strassmeier,et al. PEPSI deep spectra. I. The Sun-as-a-star , 2017, 1712.06960.
[8] R. Bacon. Optical 3D-Spectroscopy for Astronomy , 2017 .
[9] Roger Haynes,et al. 4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review , 2016, Astronomical Telescopes + Instrumentation.
[10] Jason Wright,et al. A comprehensive radial velocity error budget for next generation Doppler spectrometers , 2016, Astronomical Telescopes + Instrumentation.
[11] L. Pastewka,et al. Quantitative characterization of surface topography using spectral analysis , 2016, 1607.03040.
[12] A. Kelz,et al. The Potsdam MRS spectrograph: heritage of MUSE and the impact of cross-innovation in the process of technology transfer , 2016, Astronomical Telescopes + Instrumentation.
[13] A. Weijmans. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory , 2015, 1508.04314.
[14] J. P. Torres-Papaqui,et al. CALIFA, the Calar Alto Legacy Integral Field Area survey - III. Second public data release , 2012, 1210.8150.
[15] I. Ribas,et al. CARMENES. I. A radial-velocity survey for terrestrial planets in the habitable zones of M dwarfs. A historical overview , 2012, 1210.5465.
[16] Tony Farrell,et al. SAMI: a new multi-object IFS for the Anglo-Australian Telescope , 2012, Other Conferences.
[17] Keegan S. McCoy,et al. Optical fiber modal noise in the 0.8 to 1.5 micron region and implications for near infrared precision radial velocity measurements , 2012, Other Conferences.
[18] Suvrath Mahadevan,et al. The habitable-zone planet finder: a stabilized fiber-fed NIR spectrograph for the Hobby-Eberly Telescope , 2012, Other Conferences.
[19] Pascal Jagourel,et al. MOONS: a multi-object optical and near-infrared spectrograph for the VLT , 2012, Other Conferences.
[20] J. Allington-Smith,et al. Simulation of complex phenomena in optical fibres , 2012, 1207.4512.
[21] R. Haynes,et al. Relative contributions of scattering, diffraction and modal diffusion to focal ratio degradation in optical fibres , 2011 .
[22] U. Lemke,et al. Modal noise prediction in fibre-spectroscopy I: Visibility and the coherent model , 2011, 1106.1288.
[23] D. Lemke,et al. Modern Technologies in Space- and Ground-based Telescopes and Instrumentation , 2010 .
[24] J. Allington-Smith,et al. Characterising modal noise in fibre-coupled spectrographs for astronomy , 2010, Astronomical Telescopes + Instrumentation.
[25] Andreas Kelz,et al. Supercontinuum light sources for use in astronomical instrumentation: a test with PMAS, the Potsdam multi-aperture spectrophotometer , 2010, Astronomical Telescopes + Instrumentation.
[26] Gerardo Avila,et al. Results on fibre scrambling for high accuracy radial velocity measurements , 2010, Astronomical Telescopes + Instrumentation.
[27] Jurek Brzeski,et al. Fibre-Multi-Object Spectrograph (FMOS) for Subaru Telescope , 2010, SPIE Astronomical Telescopes + Instrumentation.
[28] P. Weilbacher,et al. P3D: a general data-reduction tool for fiber-fed integral-field spectrographs , 2010, 1002.4406.
[29] A. Boudrioua. Optical Waveguide Theory , 2010 .
[30] Lisa A. Crause,et al. Investigation of focal ratio degradation in optical fibres for astronomical instrumentation , 2008, Astronomical Telescopes + Instrumentation.
[31] D. O. Astronomy,et al. The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX): Description and Early Pilot Survey Results , 2008, 0806.0183.
[32] J. Allington-Smith,et al. Fibre modal power distributions in astronomy and their application to OH-suppression fibres , 2007 .
[33] H Germany,et al. PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.
[34] J. Schmoll,et al. Statistical Test of Optical Fibers for Use in PMAS, the Potsdam Multi‐Aperture Spectrophotometer , 2003, astro-ph/0304288.
[35] Tony Farrell,et al. Installation and Commissioning of FLAMES, the VLT Multifibre Facility , 2002 .
[36] Gordon A. H. Walker,et al. Modal Noise in High‐Resolution, Fiber‐fed Spectra: A Study and Simple Cure , 2001 .
[37] T. Ida,et al. Extended pseudo-Voigt function for approximating the Voigt profile , 2000 .
[38] Bernard Delabre,et al. HARPS: a new high-resolution spectrograph for the search of extrasolar planets , 2000, Astronomical Telescopes and Instrumentation.
[39] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[40] Ian R. Parry,et al. A method for determining the focal ratio degradation of optical fibres for astronomy , 1994 .
[41] Wei-Ping Huang. Coupled-mode theory for optical waveguides: an overview , 1994 .
[42] Todd R. Hunter,et al. SCRAMBLING PROPERTIES OF OPTICAL FIBERS AND THE PERFORMANCE OF A DOUBLE SCRAMBLER , 1992 .
[43] Pierre Connes,et al. Optical fibers in astronomical instruments , 1992 .
[44] T H Wood,et al. Actual modal power distributions in multimode optical fibers and their effect on modal noise. , 1984, Optics letters.
[45] K. Aoyama,et al. Modal-noise evaluation in multimode-fiber transmission. , 1983, Optics letters.
[46] K. Petermann,et al. Nonlinear distortions and noise in optical communication systems due to fiber connectors , 1980 .
[47] Richard Edward Epworth,et al. Phenomenon of modal noise in fiber systems , 1979 .
[48] John F. Kielkopf,et al. New approximation to the Voigt function with applications to spectral-line profile analysis , 1973 .
[49] D. Gloge,et al. Optical power flow in multimode fibers , 1972 .
[50] J. Peyre,et al. Linear combination of Lorentzian and Gaussian profiles to fit resonance spectra (Letter to the Editor) , 1972 .
[51] Ellis E. Whiting,et al. An empirical approximation to the Voigt profile , 1968 .
[52] Jan Swevers,et al. Ground-based and airborne instrumentation for astronomy , 2010 .
[53] I. Guinouard,et al. Use and Development of Fiber Optics on the VLT , 1998 .
[54] Taft E. Armandroff,et al. Observational Performance of Fiber Optics - High Precision Sky Subtraction and Radial Velocities , 1993 .
[55] Lawrence W. Ramsey,et al. Focal ratio degradation in optical fibers of astronomical interest , 1988 .
[56] K. Glazebrook. First Results from the 2df Galaxy Redshift Survey , 2022 .