Şehiriçi Karayolu Ağlarının Sezgisel Harmoni Araştırması Optimizasyon Yöntemi ile Ayrık Tasarımı

Bu calismada, sehirici ulastirma aglarinin ayrik tasarimi, dogrusal olmayan karma tamsayili programlama problemi olarak formulize edilmis ve sezgisel Harmoni Arastirmasi (HA) optimizasyon teknigi ile cozumlenmistir. Trafik akimlarinin yol agindaki dagilimini temsil eden trafik atamasi problemi, kullanici dengesi yaklasimi altinda Genellestirilmis Indirgenmis Gradyan (GIG) yontemi kullanilarak cozulmustur. Ag uzerindeki toplam seyahat suresini en aza indiren yatirim stratejisi, ongorulen yatirim butcesi goz onunde bulundurularak belirlenmistir. Onerilen yontem, literaturde sikca kullanilan iki ornek yol agina uygulanmistir. Calismada, sehirici ulastirma aglarinin ayrik tasariminda sezgisel HA tabanli cozum yonteminin etkin bir sekilde kullanilabilecegi gosterilmis ve bu yontem ile cozumlenen karayolu aginin sistem performansinda yaklasik %16’lik iyilesme saglanmistir

[1]  Z. Geem,et al.  PARAMETER ESTIMATION OF THE NONLINEAR MUSKINGUM MODEL USING HARMONY SEARCH 1 , 2001 .

[2]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[3]  C. B. Mcguire,et al.  Studies in the Economics of Transportation , 1958 .

[4]  Peter A. Steenbrink,et al.  Transport network optimization in the Dutch integral transportation study , 1974 .

[5]  Ziyou Gao,et al.  Solution algorithm for the bi-level discrete network design problem , 2005 .

[6]  Michael Patriksson,et al.  The Traffic Assignment Problem: Models and Methods , 2015 .

[7]  Thomas L. Magnanti,et al.  Network Design and Transportation Planning: Models and Algorithms , 1984, Transp. Sci..

[8]  Halim Ceylan,et al.  Transport energy modeling with meta-heuristic harmony search algorithm, an application to Turkey , 2008 .

[9]  Dietrich Braess,et al.  Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.

[10]  M. Tamer Ayvaz,et al.  Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and meta-heuristic harmony search algorithm , 2007 .

[11]  Leon S. Lasdon,et al.  Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming , 1978, TOMS.

[12]  Y Iida,et al.  Transportation Network Analysis , 1997 .

[13]  Lynne Stokes,et al.  Using spreadsheet solvers in sample design , 2004, Comput. Stat. Data Anal..

[14]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[15]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[16]  Yosef Sheffi,et al.  Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods , 1985 .

[17]  David E. Boyce,et al.  Urban Transportation Network-Equilibrium and Design Models: Recent Achievements and Future Prospects , 1984 .

[18]  M. Turnquist,et al.  Approximate algorithms for the discrete network design problem , 1982 .

[19]  Michael G.H. Bell,et al.  Genetic algorithm solution for the stochastic equilibrium transportation networks under congestion , 2005 .

[20]  Larry J. LeBlanc,et al.  An Algorithm for the Discrete Network Design Problem , 1975 .

[21]  Clermont Dupuis,et al.  An Efficient Method for Computing Traffic Equilibria in Networks with Asymmetric Transportation Costs , 1984, Transp. Sci..

[22]  Attahiru Sule Alfa,et al.  A Network Design Algorithm Using a Stochastic Incremental Traffic Assignment Approach , 1991, Transp. Sci..

[23]  Hai Yang,et al.  Models and algorithms for road network design: a review and some new developments , 1998 .

[24]  Ali Haydar Kayhan,et al.  Hybridizing the harmony search algorithm with a spreadsheet ‘Solver’ for solving continuous engineering optimization problems , 2009 .

[25]  Jennifer Duthie,et al.  Incorporating Environmental Justice Measures into Equilibrium-Based Network Design , 2008 .

[26]  Z. Geem Optimal cost design of water distribution networks using harmony search , 2006 .

[27]  Le Blanc MATHEMATICAL PROGRAMMING ALGORITHMS FOR LARGE SCALE NETWORK EQUILIBRIUM AND NETWORK DESIGN PROBLEMS , 1973 .

[28]  Ali Haydar Kayhan,et al.  PSOLVER: A new hybrid particle swarm optimization algorithm for solving continuous optimization problems , 2010, Expert Syst. Appl..

[29]  Ziyou Gao,et al.  Two-way road network design problem with variable lanes , 2007 .

[30]  Liu Zheng-lian,et al.  An improved branch and bound algorithm , 2011 .

[31]  K. Lee,et al.  The harmony search heuristic algorithm for discrete structural optimization , 2005 .