Diameter prediction and optimization of hot extrusion-synthesized polypropylene filament using statistical and soft computing techniques

[1]  K. Höllig,et al.  Matlab® , 2020, Aufgaben und Lösungen zur Höheren Mathematik 1.

[2]  Joong-Ho Kwon,et al.  Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling. , 2017, Food chemistry.

[3]  S. Vinodh,et al.  Optimization of process parameters of SMAW process using NN-FGRA from the sustainability view point , 2017, J. Intell. Manuf..

[4]  A. M. M. Sharif Ullah,et al.  Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing , 2015, Journal of Intelligent Manufacturing.

[5]  Lohithaksha M. Maiyar,et al.  A combined tactical and operational deterministic food grain transportation model: Particle swarm based optimization approach , 2017, Comput. Ind. Eng..

[6]  Manoj Kumar Tiwari,et al.  A multi-period inventory transportation model for tactical planning of food grain supply chain , 2017, Comput. Ind. Eng..

[7]  Guoqun Zhao,et al.  Microstructure analysis of an Al-Zn-Mg alloy during porthole die extrusion based on modeling of constitutive equation and dynamic recrystallization , 2017 .

[8]  Minjie Wang,et al.  Effect of Die Lip Geometry on Polymer Extrudate Deformation in Complex Small Profile Extrusion , 2017 .

[9]  Ahmed Waleed Hussein,et al.  Mathematical Analyses and Numerical Simulations for Forward Extrusion of Circular, Square, and Rhomboidal Sections From Round Billets Through Streamlined Dies , 2017 .

[10]  Luis Alberto Rodríguez-Picón,et al.  An uncertainty approach for optimization of production parameters—a case study in an extrusion molding process , 2017 .

[11]  Kamel Chaoui,et al.  Machining of tough polyethylene pipe material: surface roughness and cutting temperature optimization , 2017 .

[12]  Manjusri Misra,et al.  Statistical optimization of compatibilized blends of poly(lactic acid) and acrylonitrile butadiene styrene , 2017 .

[13]  K. Hans Raj,et al.  Quantum seeded evolutionary computational technique for constrained optimization in engineering design and manufacturing , 2017 .

[14]  Sadettin Orhan,et al.  Effects of Process Parameters on Hot Extrusion of Hollow Tube , 2017 .

[15]  Hamed Farzad,et al.  Die Profile Optimization of Rectangular Cross Section Extrusion in Plane Strain Condition Using Upper Bound Analysis Method and Simulated Annealing Algorithm , 2017 .

[16]  Ping Lu,et al.  Automatic optimization design of a feeder extrusion die with response surface methodology and mesh deformation technique , 2017 .

[17]  Qiang Wang,et al.  Multi-objective optimizations of multidirectional forming mold based on fractional factorial design , 2017 .

[18]  Hidir Yanki Kiliçgedik,et al.  Application of gene expression programming in hot metal forming for intelligent manufacturing , 2018, Neural Computing and Applications.

[19]  Pauline Ong,et al.  Modeling and optimization of cold extrusion process by using response surface methodology and metaheuristic approaches , 2018, Neural Computing and Applications.

[20]  Xueming Xu,et al.  Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion. , 2016, Food Chemistry.

[21]  Manjusri Misra,et al.  Reactive compatibilization of poly trimethylene terephthalate (PTT) and polylactic acid (PLA) using terpolymer: Factorial design optimization of mechanical properties , 2016 .

[22]  Andrés Bustillo,et al.  Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components , 2016, J. Comput. Des. Eng..

[23]  Emel Kuram,et al.  Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling , 2016, J. Intell. Manuf..

[24]  Michael McDonald,et al.  Fundamentals of Modern Manufacturing: Materials, Processes and Systems , 2016 .

[25]  Shumei Lou,et al.  Extrusion Process Parameters Optimization for the Aluminum Profile Extrusion of an Upper Beam on the Train Based on Response Surface Methodology , 2016 .

[26]  Sina Rezazadeh,et al.  Modeling, analysis and multi-objective optimization of twist extrusion process using predictive models and meta-heuristic approaches, based on finite element results , 2014, Journal of Intelligent Manufacturing.

[27]  Álvar Arnaiz-González,et al.  Using artificial neural networks for the prediction of dimensional error on inclined surfaces manufactured by ball-end milling , 2015, The International Journal of Advanced Manufacturing Technology.

[28]  F. Fereshteh-Saniee,et al.  Optimized tool design for expansion equal channel angular extrusion (Exp-ECAE) process using FE-based neural network and genetic algorithm , 2016 .

[29]  Chao Li,et al.  Topology, size and shape optimization of an automotive cross car beam , 2015 .

[30]  Azlan Mohd Zain,et al.  A multi-performance prediction model based on ANFIS and new modified-GA for machining processes , 2015, J. Intell. Manuf..

[31]  M. Sharififar,et al.  Simulation and optimization of hot extrusion process to produce rectangular waveguides , 2015 .

[32]  C. Venkatesh,et al.  Optimization of Process Parameters of Hot Extrusion of SiC/Al 6061 Composite Using Taguchi's Technique and Upper Bound Technique , 2015 .

[33]  O. Yu. Agapitova,et al.  Modeling and optimization of hydromechanical extrusion of tough-to-machine metals , 2014, Russian Journal of Non-Ferrous Metals.

[34]  Kang Li,et al.  The effect of melt viscosity on thermal efficiency for single screw extrusion of HDPE , 2014 .

[35]  Branimir Lela,et al.  Model-based controlling of extrusion process , 2014 .

[36]  Sandro Wartzack,et al.  Neural network based modeling and optimization of deep drawing – extrusion combined process , 2014, J. Intell. Manuf..

[37]  Zarita Zainuddin,et al.  Optimization of cellulose phosphate synthesis from oil palm lignocellulosics using wavelet neural networks. , 2013 .

[38]  Hao Chen,et al.  Multiobjective optimization design of porthole extrusion die using Pareto-based genetic algorithm , 2013 .

[39]  Konstantinos Salonitis,et al.  Robust optimization of the energy efficiency of the cold roll forming process , 2013 .

[40]  Zarita Zainuddin,et al.  An efficient cuckoo search algorithm for numerical function optimization , 2013 .

[41]  Dyi-Cheng Chen,et al.  Application of ANOVA and taguchi-based mutation particle swarm algorithm for parameters design of multi-hole extrusion process , 2013 .

[42]  Yi-Wei Lin,et al.  Application of fuzzy-based Taguchi method to the optimization of extrusion of magnesium alloy bicycle carriers , 2012, J. Intell. Manuf..

[43]  Zarita Zainuddin,et al.  Wavelet neural networks applied to pulping of oil palm fronds. , 2011, Bioresource technology.

[44]  Zarita Zainuddin,et al.  Reliable multiclass cancer classification of microarray gene expression profiles using an improved wavelet neural network , 2011, Expert Syst. Appl..

[45]  Narongrit Sombatsompop,et al.  Effects of Roller Speed, Die Temperature, Volumetric Flow Rate, and Multiple Extrusions on Mechanical Strength of Molten and Solidified LDPE under Tensile Deformation , 2011 .

[46]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[47]  Vincenzo Tagliaferri,et al.  Artificial neural networks to optimize the extrusion of an aluminium alloy , 2010, J. Intell. Manuf..

[48]  Konstantinos Salonitis,et al.  Optimization of roll forming process parameters—a semi-empirical approach , 2010 .

[49]  Nadhir Lebaal,et al.  Optimisation of extrusion flat die design and die wall temperature distribution, using Kriging and response surface method , 2010 .

[50]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[51]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[52]  K. Hans Raj,et al.  Neuro-fuzzy modeling of hot extrusion process , 2009 .

[53]  Mohammad Mastoori,et al.  Computational study of Ti–6Al–4V flow behaviors during the twist extrusion process , 2008 .

[54]  Qian Li,et al.  Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method , 2007 .

[55]  L. Koster,et al.  Influencing factors and parameters in the extrusion process , 2005 .

[56]  Abdellah Ajji,et al.  Oriented structure and anisotropy properties of polymer blown films: HDPE, LLDPE and LDPE , 2004 .

[57]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[58]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[59]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[60]  Steven R Schmid Kalpakjian,et al.  Manufacturing Engineering and Technology , 1991 .